KosmicKrisp

L U N /\ R
A Vulkan to Metal ===

Mesa driver

Aitor Camacho Larrondo

About me
e Ubisoft Berlin 2019-2020

KosmicKrisp
o Optimizing games for consoles, mainly Nintendo Switch ——
Passing 1.3 CTS!

e Arm Norway AS 2021 s

o Arm Mali GPU driver optimization

e LunarG 2022-Present

o Vulkan Validation Layers

o Vulkan Conformance Test Suite (CTS)
o MoltenVK

o KosmicKrisp

LUNAR

POWER YOUR SUCCESS

What is KosmicKrisp?

A Vulkan driver that translates Vulkan to Metal

KosmicKrisp

Built using Mesa’s Vulkan driver framework T
Passing 1.3 CTS!

Targets Apple Silicon

o macOS: Ml-series onwards
o 10S: Not supported but designed for A14 Bionic onwards

Baseline:

o Vulkan 1.2 for macOS 13+
o Vulkan 1.3 for macOS 15+

Vulkan Conformance Test Suite for 1.3 submitted
o Verification passed!l

SSSSSSSSSSSSSSSS

Why do KosmicKrisp?

e Achieve Vulkan Conformance
o Eliminating need for Vulkan® Portability™ KosmicKrisp

® Mesa provides a fast driver development environment: p,.ing 13 cTs!
o 10 months from a blank state to passing Vulkan CTS 1.3l

o NIR, removing the need for SPIRV-Cross
m SPIRV-cross -> MSL (used by MoltenVK) isn't a compiler stack
m Cleaner to add instructions, rewrite input/output layouts, ...
m Remove dependency upon external project

o Vulkan driver framework and utilities for emulation when needed
© Broad community
o Everything is in-tree and MIT licensed

e Fresh start allowing us to:

o Design with new Metal features in mind
o Drop older hardware which would difficult development LUNAR

POWER YOUR SUCCESS

Timeline

Jan ‘24 LunarG starts work on MoltenVK

KosmicKrisp
o Goal: Vulkan conformant solution for Apple platforms ———

; : : Passing 13 CTS!
Jun 24 Alyssa Anne Rosenzweig releases HoneyKrisp .

© Demonstrates Vulkan 1.3 conformance on Apple hardware
o Sparks preliminary investigation on a Mesa Vulkan® -> Metal® driver

Oct '24 LunarG Action plan for a Mesa Vulkan® -> Metal®
driver

o Goal: Vulkan 1.3 using Metal 3.1 as baseline, target macOS 13+
o Need to wrap up work on MoltenVK, and ramp up on Mesa
© Probe receptiveness

Nov 24 Funding secured, project starts

LUNAR

POWER YOUR SUCCESS

Timeline (cont.)

Nov 24 Funding secured, project starts
Feb 25 First compute tests passing

o Resources, queue submission, synchronization...
Mar ‘25 First triangle
Apr ‘25 vkcube working
May ‘25 First full CTS run completed

o 95,086 pass; 114,168 failures; 2,538,080 not supported
Aug ‘25 SigGraph announcement and demo

Sep ‘25 No failures running Vulkan CTS for 1.3

o Raise baseline to Metal 3.2 (macOS 15) for Vulkan 1.3
o Keep Metal 3.1 (macOS 13) for Vulkan 1.2

KosmicKrisp

Passing 1.3 CTS!

SSSSSSSSSSSSSSSS

KosmicKrisp architecture

e Project started with Metal 3.1 as baseline

KosmicKrisp
o Cover older OS to a reasonable degree ——

Passing 1.3 CTS!

o Metal 3.1introduces image atomics, hard requirement

e NVK as baseline (following HoneyKrisp steps)
o Stripped backend from NVK and started adding Metal

e Command buffers recorded at queue submission

o MTLCommandQueue has limited command buffer count

o Two command queues per queue: main and helper

o Helper used only when inside a render pass that requires some
translation done to the inputs, e.g. triangle fan emulation

o Design allows to remove record at queue submission if
MTLCommandQueue limitation is lifted

LUNAR

POWER YOUR SUCCESS

KosmicKrisp architecture (cont.)

e Considerable texture functionality through emulation

KosmicKrisp
o 1D textures unusable, emulated as 2D textures ——

Passing 1.3 CTS!

o No atomics for 2D cube textures, emulated as 2D texture arrays
o Sampler bias is a function argument, not part of the sampler in Metal

e Visibility queries (same as HoneyKrisp)

o Dedicated buffer with max queries always bound
o Allocation/deallocation provides index to buffer
© Reads get propagated after render encoder

e Dynamic rendering and bindless from the very beginning

o 2 argument buffers bound at all times
m Root argument buffer containing all required data (vbos, descriptors, etc)
m Sampler argument buffer

LUNAR

POWER YOUR SUCCESS

KosmicKrisp architecture (cont.)

e vk_meta to cover Metal gaps

KosmicKrisp
o Blit, fill buffer, resolve... ——

e NIR helped fill Metal gaps PEEENE 18 TS

o Blending (Metal does not support blending on all formats)
All lowering for 1D textures

Gather operations with offsets

Cube map sampling with gradient

O O O O

e (Custom border color (same as HoneyKrisp)

o Not exposed yet due to performance cost

e Vulkan 1.3 requires Vulkan Memory Model

© This can only be accomplished with Metal 3.2
o Metal Fence Functions required, namely “atomic_thread_fence” LUNAR

POWER YOUR SUCCESS

Our biggest issues while developing
e Metal

_ KosmicKrisp
o No specification, samples as the only reference ————

Passing 1.3 CTS!

o Invalid Metal usage can only be found through runtime validation
o Crashes and bugs, a considerable amount. Worst one requiring reboot
e Buggy MSL compiler, e.g.

o Crash due to uninitialized local array variable
o Crash due to constant break condition in infinite loop
o And many more. Workarounds will be documented in a file

e Xcode GPU debugger

o Disparities between capture and actual result
o Disparities between capture and shader debugger

e Documentation about how to in NIR would be beneficial

LUNAR

POWER YOUR SUCCESS

What's next?

Merge upstream

O failures running CTS does not mean fool proof Fosmickrsp

Passing 1.3 CTS!

o Want to spend some time testing more real workloads

Add KosmicKrisp to LunarG Cl (builds, CTS, workloads)

Add to Vulkan macQOS SDK along with MoltenVK for users to choose
Vulkan 14

My bucket list in no particular order:

Sparse memory

Tessellation and Geometry shaders
Mesh shaders

Ray tracing???

Shader objects???

O O O O O

SSSSSSSSSSSSSSSS

Sponsored by Google

KosmicKrisp

"Google is committed to providing Android developers with Passing 13 CTS!
exceptional tools across all platforms, including strong

support for Vulkan. We're excited about how KosmicKrisp

will enhance the Vulkan developer experience and make the

Android Emulator even more powerful.”

- Serdar Kocdemir - Senior Software Engineer at Google [Tech Lead for

Graphics on the Android Emulator

SSSSSSSSSSSSSSSS

The KosmicKrisp Team

e Aitor Camacho Larrondo

o Overall driver architect and lead developer
e Arcady Goldmints-Orlov

o NIR->MSL compiler

® Alyssa Anne Rosenzweig
o Mentorship!

SSSSSSSSSSSSSSSS

-

KosmicKrisp

Passing 1.3 CTS!

Demo will showcase the
Android emulator running
through KosmicKrisp

SSSSSSSSSSSSSSSS

Questions?

SSSSSSSSSSSSSSSS

