
The Vulkan Profiles Tools
Better Vulkan Application Portability thanks to Vulkan Profiles

Christophe Riccio, LunarG
April 2024

1

mailto:christophe@lunarg.com
https://www.lunarg.com/

Why do Vulkan Profiles matter? 3
Explicit Vulkan capability requirements 3
Projects using Vulkan Profiles 3

Unreal Engine: A real-time 3D creation tool 3
DXVK: A Vulkan-based translation layer for Direct3D 9/10/11 4
vkd3d-proton: An implementation of the full Direct3D 12 API on top of Vulkan 4
Zink: a Gallium driver that emits Vulkan API calls 4
Android Baseline Profiles 5
Android 15 Minimums Profile 5
Khronos Roadmap Profiles 5

Different types of Vulkan Profiles 5
The Vulkan Profiles Tools Components 6

Vulkan Capability minimum requirements 9
The Vulkan Profiles Tools Code Generation 9
The Vulkan Profiles documentation 10

Creating a Vulkan Profiles JSON files 11
Generating a Device Vulkan Profiles files 11

Vulkaninfo 11
GPUInfo.org 11

Generating a Platform Vulkan Profiles JSON files 11
JSON script to generate merged Vulkan profiles 13

Creating a Vulkan Profiles JSON files manually 15
Limitations of Vulkan Profiles schema validation 17

Human readable Vulkan Profiles documentation 18
Using the Vulkan Profiles layer 19

Simulation vs. Emulation 19
Reducing Vulkan application development time 19
Enabling the Profiles layer using Vulkan Configurator 21
Vulkan Profiles layer limitations 27

Using the Vulkan Profiles API library 29
Integration of the Vulkan Profiles API library in an application 29
Generating Vulkan Profiles API library 30
Basic usage of the Vulkan Profiles API library 31
Advanced usage of the Vulkan Profiles library 33

Vulkan Profiles Tools future improvements 34
Revision History 35

April 2024 The Vulkan Profiles Tools 2

Why do Vulkan Profiles matter?
The discussion regarding shipping a cross-platform application is typically framed around a
perfectly homogenous ecosystem against an overly heterogeneous ecosystem. The Vulkan
ecosystem contains a huge diversity of hardware vendors, devices, and drivers that keep
evolving, making it hard to be sure that any given Vulkan application will work on all targeted
devices.

We believe at LunarG that expecting the ecosystem to be homogenous is unrealistic. This
problem is not new and was also massive in the OpenGL/OpenGL ES ecosystem. Vulkan is a
cross-platform and evolving industry standard enabling developers to target a wide range of
devices with the same graphics API.

Instead, Vulkan Profiles look at the problem with a different paradigm: a Vulkan application is
not designed to target the entire ecosystem, but has a domain of relevance. The different
actors in the ecosystem should instead better communicate (including programmatically) about
Vulkan support and Vulkan requirements. This is formalized by Vulkan Profiles.

Explicit Vulkan capability requirements
The Vulkan Profiles make the Vulkan capability requirements explicit between the application
and the domain of relevance of the Vulkan application. We should expect a co-evolution of the
application and its domain, which can be formalized by profiles and revisions of the profiles.

Conceptually, Vulkan Profiles can be understood as the explicit expression and formalization of
Vulkan capability requirements, which provide clear communication of these requirements within
the Vulkan community and across Vulkan components in the ecosystem.

With this approach, we think Vulkan Profiles help create more portable Vulkan applications
within a specific Vulkan domain; but we acknowledge Vulkan Profiles are as relevant as their
adoption by the Vulkan ecosystem.

Projects using Vulkan Profiles
We are interested in knowing how Vulkan developers are using Vulkan Profiles. Contact us to let
us know!

Unreal Engine: A real-time 3D creation tool
The Unreal Engine uses the Android and Desktop profiles to specify the feature requirements of
some rendering code paths. Specifically, it’s used to check the support of the required Ray
Tracing capabilities in the user’s system. The code base uses the Vulkan Profiles API library to

April 2024 The Vulkan Profiles Tools 3

https://www.lunarg.com/
mailto:christophe@lunarg.com
mailto:christophe@lunarg.com
https://www.unrealengine.com/

exit gracefully if the requirements are not satisfied. During the engine
development process, the required Vulkan capabilities are gathered when the execution hits an
assert. The validation layer checks for capability requirements scattered across the code, and
these are then consolidated into profiles. When the application user starts an execution, the
capability requirements are fully checked with the profile, ensuring they will not hit those asserts
of missing capabilities.

DXVK: A Vulkan-based translation layer for Direct3D 9/10/11
This is a Vulkan-based translation layer for Direct3D 9/10/11 which allows running Direct3D
applications on Linux using Wine.

The VP_DXVK_requirements profiles are used to list all the Vulkan capabilities required by the
device’s Vulkan driver to be able to run Direct3D 9, Direct3D 10.1 and Direct3D 11 for most
relevant feature levels. For example, the VP_DXVK_d3d11_level_11_1_baseline profile lists
the requirements to be able to run a Direct3D 11 Feature Level 11.1 application. The
VP_DXVK_d3d11_level_11_1_optimal profile is similar to the
VP_DXVK_d3d11_level_11_1_baseline but also includes Vulkan capabilities to get the best
performance possible from the DXVK Direct3D 11 implementation.

vkd3d-proton: An implementation of the full Direct3D 12 API on top of
Vulkan
vkd3d-proton is a fork of VKD3D, which aims to implement the full Direct3D 12 API on top of
Vulkan. The project serves as the development effort for Direct3D 12 support in Proton.

The VKD3D profiles are used to list all the Vulkan capabilities required by the device’s Vulkan
driver to be able to run Direct3D 12 for most relevant feature levels. For example, the
VP_D3D12_FL_12_2_baseline profile lists the requirements to be able to run a Direct3D 12
Feature Level 12.2 application. The VP_D3D12_FL_12_2_optimal profile is similar to the
VP_D3D12_FL_12_2_baseline but also includes Vulkan capabilities to get the best
performance possible from VKD3D-Proton Direct3D 12 implementation. VKD3D-Proton also has
per-vendor dedicated profiles such ad VP_D3D12_maximum_radv and VP_D3D12_maximum_nv

which represent the maximum feature set VKD3D-Proton can use on RADV and NVIDIA driver,
respectively.

Zink: a Gallium driver that emits Vulkan API calls
The Zink driver is a Gallium driver that emits Vulkan API calls instead of targeting a specific
GPU architecture. This can be used to get full desktop OpenGL support on devices that only
support Vulkan.

The VP_ZINK_requirements profiles are used to list all the Vulkan capabilities required by the
device Vulkan driver to be able to run each version of OpenGL. For example, the

April 2024 The Vulkan Profiles Tools 4

https://github.com/doitsujin/dxvk
https://github.com/doitsujin/dxvk/blob/master/VP_DXVK_requirements.json
https://github.com/HansKristian-Work/vkd3d-proton
https://github.com/ValveSoftware/Proton
http://vp_d3d12_vkd3d_proton_profile
https://docs.mesa3d.org/drivers/zink.html
https://gitlab.freedesktop.org/mesa/mesa/-/blob/staging/24.0/src/gallium/drivers/zink/VP_ZINK_requirements.json?ref_type=heads

VP_ZINK_gl46_baseline profile lists the requirements to be able to run an
OpenGL 4.6 application. The VP_ZINK_gl46_optimal profile is similar to the
VP_ZINK_gl46_baseline but also includes Vulkan capabilities to get the best performance
possible from the Zink OpenGL implementation.

Android Baseline Profiles
The Android Baseline profiles addressed the challenge of determining what functionality
Vulkan developers can rely on being present in Android devices. From sets of Vulkan
extensions, features, formats, and limits that were found on the vast majority of active
Android devices in 2021 and 2022, the Android Baseline 2021 and the Android Baseline
2022 profiles were created. These profiles can be used to filter the Android Vulkan
applications on the Google Play store for devices not supporting the capabilities of
these profiles.

Android 15 Minimums Profile
A collection of functionality that is mandated for chipsets that launch (or renew Google
Requirements Freeze) on Android 15. This is effectively an Android Roadmap profile.

Khronos Roadmap Profiles
The Khronos Roadmap profiles are milestones referenced by all Vulkan Working Group
hardware vendors actively developing mid-to-high-end devices for smartphone, tablet,
laptop, console, and desktop platforms. These vendors have committed to supporting this
milestone, starting with several shipping products in 2022.

Different types of Vulkan Profiles
Vulkan Profiles can be applied for a multitude of use cases, including:

● Roadmap profiles: to express guidance on the future direction of Vulkan devices.
● Platform profiles: to express the Vulkan support available on different platforms.
● Device profiles: to express the Vulkan support of a single Vulkan driver on a Vulkan

device.
● Architecture profiles: to express the Vulkan support of a class of GPUs.
● Engine profiles: to express some rendering code paths requirements of an engine.
● Drivers bugs profiles: to express capabilities that can’t be used by an application.
● Etc.

April 2024 The Vulkan Profiles Tools 5

The Vulkan Profiles Tools Components
LunarG provides the Vulkan Profiles Tools as part of the Vulkan SDK so that Vulkan application
developers may leverage Vulkan Profiles during Vulkan application development and delivery.
Developers can create portable Vulkan applications in terms of Vulkan capabilities, which
include extensions, features, properties, formats, and queue properties.

Of course, the Vulkan Profiles only handle portability in terms of Vulkan capabilities, but Vulkan
profiles may be used to document known bugs in Vulkan drivers.

The Vulkan Profiles Tools include the following components:
● The Vulkan Profiles schema

○ A JSON data format to exchange Vulkan capabilities: extensions, features,
properties, formats, and queue properties.

○ Each revision of Vulkan API is represented by a schema that supersedes older
versions of Vulkan API.

○ The schema covers Vulkan 1.3 and all extensions.
● The Vulkan Profiles merge script

○ A Python script to merge multiple Vulkan Profiles into a single Vulkan Profile
using either an intersection or union operation on the Vulkan capabilities listed by
the source Vulkan Profiles.

● The Vulkan Profiles layer
○ A layer used during application development to ensure adherence to the

requirements of a chosen Vulkan Profile.
○ It simulates but doesn't emulate Vulkan capabilities. It works together with the

Validation layer which reports errors when using capabilities not exposed by the
Vulkan developer system.

○ The layer requires a Vulkan 1.1 driver.
● The Vulkan Profiles library

○ A header-only, C++ library to use Vulkan Profiles in Vulkan applications.
○ The library allows checking Profiles support on a device and creating a VkDevice

and VkInstance instances with the profile features and extensions enabled.
○ The library requires a Vulkan 1.0 driver that supports the

VK_KHR_get_physical_device_properties2 extension.
○ A Vulkan sample is available for demonstrating Vulkan Profiles library usage.

● The Vulkan Profiles comparison table
○ Human-readable format of Vulkan Profiles in a table to simplify comparison.

Furthermore, the Vulkan SDK includes implementations of some Vulkan Profiles using the
Vulkan Profiles JSON Schema:

● VP_KHR_roadmap.json

April 2024 The Vulkan Profiles Tools 6

https://www.lunarg.com/vulkan-sdk/
https://schema.khronos.org/vulkan/
https://github.com/KhronosGroup/Vulkan-Profiles/blob/vulkan-sdk-1.3.275/OVERVIEW.md#vulkan-profiles-json-file-generation
https://vulkan.lunarg.com/doc/sdk/latest/windows/profiles_layer.html
https://vulkan.lunarg.com/doc/sdk/latest/windows/profiles_layer.html#technical-details
https://github.com/KhronosGroup/Vulkan-ValidationLayers
https://vulkan.lunarg.com/doc/sdk/latest/windows/profiles_api_library.html
https://github.com/KhronosGroup/Vulkan-Samples/pull/421
https://vulkan.lunarg.com/doc/sdk/latest/windows/profiles_definitions.html
https://github.com/KhronosGroup/Vulkan-Headers/blob/vulkan-sdk-1.3.280/registry/profiles/VP_KHR_roadmap.json

● VP_LUNARG_minimum_requirements.json

● VP_ANDROID_baseline_2021.json

● VP_ANDROID_baseline_2022.json

● VP_ANDROID_15_minimums.json

● VP_LUNARG_desktop_baseline.json

These Vulkan Profiles JSON files are written against the Vulkan Profiles JSON schema. There
is a Vulkan Profiles JSON schema file per Vulkan Header version. The Vulkan SDK contains the
Vulkan Profiles JSON schema corresponding to the Vulkan Header version of that Vulkan SDK.
The Vulkan Profiles JSON schema is located in the share/vulkan/registry directory of the
Vulkan SDK. All the schema can easily be downloaded by cloning the Khronos-Schema
repository.

The Vulkan Profiles API is not part of the Vulkan specification, but part of a library, for a very
specific reason: we wanted the Vulkan Profiles solution to be effectively usable on day one.
Hence, it should work with current Vulkan devices currently owned by users.

The solution to this problem is to not deliver the Vulkan Profiles API through the Vulkan drivers
(that can’t be updated easily on many platforms), but to deliver the Vulkan Profiles API as part of
the Vulkan application codebase.

As a result, the Vulkan Profiles library is compatible with any Vulkan 1.0 drivers that support
VK_KHR_get_physical_device_properties2 and can be leveraged simply by including it in the
Vulkan application codebase.

April 2024 The Vulkan Profiles Tools 7

https://github.com/KhronosGroup/Vulkan-Profiles/blob/vulkan-sdk-1.3.280.0/profiles/VP_LUNARG_minimum_requirements.json
https://github.com/KhronosGroup/Vulkan-Profiles/blob/vulkan-sdk-1.3.280/profiles/VP_ANDROID_baseline_2021.json
https://github.com/KhronosGroup/Vulkan-Profiles/blob/vulkan-sdk-1.3.280/profiles/VP_ANDROID_baseline_2022.json
https://github.com/KhronosGroup/Vulkan-Profiles/blob/vulkan-sdk-1.3.280/profiles/VP_ANDROID_15_minimums.json
https://schema.khronos.org/vulkan/
https://github.com/KhronosGroup/Khronos-Schemas

A typical setup of the Vulkan Profiles Tools components on the Vulkan developer system

● Vulkan application side:
○ The Vulkan applications are built with the Vulkan Profiles API library.
○ The Vulkan Profiles API library is generated using the gen_profiles_solution.py

python script and the Engine Profiles file.
○ The Engine Profiles JSON file is written by the Vulkan application developers

based on the actual rendering code paths Vulkan capabilities requirements.
○ The Engine Profiles JSON file is written and validated against a Vulkan Profiles

schema.
○ The Engine Profiles Definition doc is a markdown file generated using the

gen_profiles_solution.py python script.
● Vulkan development environment side:

○ The Vulkan Validation layer and the Vulkan Profiles layer are set up using the
Portability built-in configuration in Vulkan Configurator.

April 2024 The Vulkan Profiles Tools 8

https://schema.khronos.org/vulkan/
https://schema.khronos.org/vulkan/

○ The Vulkan Profiles layer is configured so that the system
simulates the Vulkan capabilities listed in the Platform Profile file.

○ The Platform Profile file is generated using the gen_profiles_files.py python
script and Device Profiles files.

○ The Device Profiles files are selected and downloaded from GPUInfo.org. The
criteria for the Device Profiles files depends on the developers of the Vulkan
application and the device ecosystem they want to reach for typically technical
and economical reasons.

Vulkan Capability minimum requirements
The Vulkan minimum requirements of the Vulkan specification are described in the features,
limits and formats and additional capabilities sections of the specification. Unfortunately, there is
no programmable way to access these minimum requirements. Ideally, this information would
be included in the vk.xml. To workaround this issue we create the
VP_LUNARG_minimum_requirements profiles that list the minimum requirements for each
Vulkan version.

The Vulkan Profiles Tools Code Generation
Considering the complexity of the Vulkan ecosystem, there isn't a single Vulkan Profile that can
fit all needs. As a result, on top of the predefined Vulkan Profiles, the Vulkan Profiles Tools
solution is designed around the idea of code generation.

The Vulkan Profiles Tools are also generated against vk.xml (the canonical representation of the
Vulkan specification) and Vulkan Profiles. This design guarantees that any Vulkan developer
can regenerate the entire Vulkan Profiles Tools with any new Vulkan Header update or any set
of Vulkan Profiles JSON files.

The diagram on the following page shows the Vulkan Profiles Tools generation pipeline with
every produced component:

April 2024 The Vulkan Profiles Tools 9

https://vulkan.gpuinfo.org/
https://www.khronos.org/registry/vulkan/specs/1.3/html/vkspec.html#features
https://www.khronos.org/registry/vulkan/specs/1.3/html/vkspec.html#limits
https://www.khronos.org/registry/vulkan/specs/1.3/html/vkspec.html#formats
https://www.khronos.org/registry/vulkan/specs/1.3/html/vkspec.html#capabilities
https://github.com/KhronosGroup/Vulkan-Headers/blob/main/registry/vk.xml
https://github.com/KhronosGroup/Vulkan-Profiles/blob/vulkan-sdk-1.3.275.0/profiles/VP_LUNARG_minimum_requirements.json
https://github.com/KhronosGroup/Vulkan-Headers/blob/main/registry/vk.xml
https://github.com/KhronosGroup/Vulkan-Profiles/tree/master/profiles
https://github.com/KhronosGroup/Vulkan-Headers

The Vulkan Profiles documentation
The Vulkan Profiles documentation can be used to easily read the requirements of a profile and
compare multiple profiles side by side.

It can easily be regenerated and augmented with more profiles by simply copying the list of
Vulkan Profiles files we want to document into the Profiles directory in the source.

April 2024 The Vulkan Profiles Tools 10

https://vulkan.lunarg.com/doc/sdk/latest/windows/profiles_definitions.html
https://github.com/KhronosGroup/Vulkan-Profiles/tree/master/profiles

Unset

Creating a Vulkan Profiles JSON files

Generating a Device Vulkan Profiles files

Vulkaninfo
Vulkaninfo provides a Vulkan Profiles file export allowing generating Device Vulkan Profiles
directly from the console.

A use case from LunarG experience, we are using Vulkaninfo with the Vulkan Profiles JSON file
output in our internal C.I. system so that we can get some Vulkan information on each C.I. run.

Another possible use case is to generate the JSON file, modify it to remove specific capabilities.
Then with this modified Device Profiles JSON file and using the Vulkan Profiles layer, we can
simulate the capabilities of this profile on our developer system to check that our Vulkan
application falls back or fails correctly when these capabilities are not available on an end-user
system.

Vulkaninfo is part of the Khronos Vulkan SDK.

To generate a device Vulkan Profiles JSON files from the system, we can use the command:

$ vulkaninfo --json -o my_device_profile.json

GPUInfo.org
The GPUInfo.org database is populated using the Vulkan Hardware Capability Viewer
application, available for multiple platforms. It reads and displays Vulkan related information for
the running implementation, and that data can then be uploaded to the database.

Each Vulkan driver entry in the GPUInfo.org can be exported in the form of a Vulkan Profiles
JSON file.

Vulkan Hardware Capability Viewer is part of the Khronos Vulkan SDK.

Generating a Platform Vulkan Profiles JSON files
The LunarG Desktop Baseline profiles were generated by downloading a set of Vulkan Device
Profiles on GPUInfo.org and using a Python script to merge these Vulkan Device Profiles into
Vulkan Platform Profiles by doing an intersection of all the capability of all Vulkan Device

April 2024 The Vulkan Profiles Tools 11

https://vulkan.lunarg.com/doc/view/latest/windows/vulkaninfo.html
https://vulkan.lunarg.com/sdk/home
https://vulkan.gpuinfo.org/
https://vulkan.gpuinfo.org/download.php
https://vulkan.gpuinfo.org/displayreport.php?id=27260
https://vulkan.lunarg.com/sdk/home
https://vulkan.gpuinfo.org/

Unset

Profiles : A platform profile reports the list of all the capabilities available in all
Vulkan Device profiles.

This Python script is shipping as part of the Vulkan SDK in the share/vulkan/registry directory
and is named gen_profiles_file.py.

As an example, the VP_LUNARG_desktop_baseline_2024 is a Vulkan Platform Profile
generated from multiple Vulkan Device Profiles downloaded from GPUInfo.org.

The command to generate the LunarG Desktop Baseline profiles is :

python gen_profiles_file.py

--registry vk.xml

--input ./VP_LUNARG_desktop_baseline_2024

--output-path ./VP_LUNARG_desktop_baseline_2024.json

--output-profile VP_LUNARG_desktop_baseline_2024

--profile-label "LunarG Vulkan Desktop Baseline 2024 profile"

--profile-desc "A profile generated by the intersection of a collection of

GPUInfo.org device reports to support a large number of actual systems in the Vulkan

ecosystem. This profile is meant to be a usage example for Vulkan application

developer."

--profile-date 2023-11-01

April 2024 The Vulkan Profiles Tools 12

https://vulkan.gpuinfo.org/

Unset

Unset

--profile-api-version "1.2.197"

--profile-required-profiles "VP_LUNARG_minimum_requirements_1_2"

--strip-duplicate-structs

We insist that the LunarG Desktop Baseline profiles are only usage examples of Vulkan
Platform profiles. Nobody knows better what the set of platforms a Vulkan application should
support than the Vulkan developer of that Vulkan application.

With this whitepaper, Vulkan developers should be able to produce their own platform profiles
representing the ecosystem of Vulkan devices and drivers their Vulkan applications should
support.

For more information on how to use gen_profiles_file.py, we can use the command :

python gen_profiles_file.py --help

JSON script to generate merged Vulkan profiles
In some scenarios, generating Vulkan Profiles using the command line and command line
arguments might be not particularly convenient, especially if the generated profiles are being
updated over time.

For this, we create a JSON configuration file to store all these data. Furthermore, with this JSON
file we can generate multiple profiles stored into a single Vulkan Profiles JSON file. Following is
an example of the JSON configuration file used to generate the LunarG desktop profiles.

{

"$schema": "profiles-config-latest",

"profiles": {

"VP_LUNARG_desktop_baseline_2022": {

"version": 2,

"input": "VP_LUNARG_desktop_baseline_2022",

"label": "LunarG Vulkan Desktop Baseline 2022 profile",

"description": "A profile generated...",

"date": "2023-01-26",

"stage": "STABLE",

"api-version": "1.1.139",

"required-profiles": ""

},

April 2024 The Vulkan Profiles Tools 13

https://github.com/KhronosGroup/Vulkan-Profiles/blob/vulkan-sdk-1.3.280/profiles/VP_LUNARG_desktop_baseline_config.json

"VP_LUNARG_desktop_baseline_2023": {

"version": 2,

"input": "VP_LUNARG_desktop_baseline_2023",

"label": "LunarG Vulkan Desktop Baseline 2023 profile",

"description": "A profile generated...",

"date": "2023-01-30",

"stage": "STABLE",

"api-version": "1.2.148",

"required-profiles": ""

},

"VP_LUNARG_desktop_baseline_2024": {

"version": 1,

"input": "VP_LUNARG_desktop_baseline_2024",

"label": "LunarG Vulkan Desktop Baseline 2024 profile",

"description": "A profile generated...",

"date": "2024-02-20",

"stage": "STABLE",

"api-version": "1.2.197",

"required-profiles": ""

}

},

"contributors": {

"Christophe Riccio": {

"company": "LunarG",

"email": "christophe@lunarg.com",

"contact": true

}

},

"history": [

{

"revision": 2,

"date": "2024-02-21",

"author": "Christophe Riccio",

"comment": "Updated Desktop Baseline 2023 and 2022 to version 2

with ARC support"

},

{

"revision": 1,

"date": "2024-02-21",

"author": "Christophe Riccio",

"comment": "Merged Desktop Baseline 2024, 2023 and 2022 into a

single file"

}

]

}

April 2024 The Vulkan Profiles Tools 14

Unset

Unset

The JSON configuration file for the file generation script is being executed by the
following command line :

python gen_profiles_file.py
--registry vk.xml
--config VP_LUNARG_desktop_baseline_config.json
--output-path ./VP_LUNARG_desktop_baseline.json

Creating a Vulkan Profiles JSON files manually
The Vulkan Profiles schema is a JSON file generated using the vk.xml file. For each Vulkan
Header revision, we can generate a Vulkan Profiles schema that is updated on the Khronos
Vulkan Schema page and Khronos Schema git repository. Generating a new Vulkan Profiles
schema may be necessary to leverage Vulkan capabilities introduced with a new Vulkan Header
revision.

The role of the Vulkan Profiles schema is to ensure that profile files, created in the ecosystem,
will be syntactically valid files that can be consumed reliably by Vulkan tools and applications.
Specifically, the schema validated the name of the structures and structures members so there
can’t be any spelling errors. Similarly, the schema lists all valid enum values.

Validating Vulkan Profiles JSON files against the schema can be performed using any tools
typically used for this purpose, including the web-based validators such as:

- http://www.jsonschemavalidator.net/
- https://json-schema-validator.herokuapp.com/
- https://jsonschemalint.com/#/version/draft-04/markup/json/

This can also be done with C++ libraries such as Valijson and most likely any JSON schema
validation library already integrated into a Vulkan project codebase.

{
"$schema": "https://schema.khronos.org/vulkan/profiles-0.8.2-276.json#",
"capabilities": {

"requirements_roadmap2022": {
"features": {

"VkPhysicalDeviceFeatures": {
"multiDrawIndirect": true,
"shaderInt16": true,
"shaderImageGatherExtended": true

}
},
"properties": {

April 2024 The Vulkan Profiles Tools 15

https://github.com/KhronosGroup/Vulkan-Headers/blob/main/registry/vk.xml
https://schema.khronos.org/vulkan/
https://schema.khronos.org/vulkan/
https://github.com/KhronosGroup/Khronos-Schemas
http://www.jsonschemavalidator.net/
https://json-schema-validator.herokuapp.com/
https://jsonschemalint.com/#/version/draft-04/markup/json/
https://github.com/tristanpenman/valijson

"VkPhysicalDeviceProperties": {
"limits": {

"timestampComputeAndGraphics": true,
"maxColorAttachments": 8,
"maxBoundDescriptorSets": 7

}
}

}
},
"requirements_roadmap2024": {

"features": {
"VkPhysicalDeviceVulkan12Features": {

"shaderInt8": true,
"shaderFloat16": true,
"storageBuffer8BitAccess": true

}
},
"properties": {

"VkPhysicalDeviceVulkan12Properties": {
"shaderRoundingModeRTEFloat16": true,
"shaderRoundingModeRTEFloat32": true

}
}

}
},
"profiles": {

"VP_EXAMPLE_example_2024": {
"version": 1,
"api-version": "1.3.276",
"label": "Vulkan Example 2024 profile",
"description": "Description of Example 2024 profile",
"profiles": [

"VP_EXAMPLE_roadmap_2022"
],
"capabilities": [

"requirements_roadmap2024"
]

},
"VP_EXAMPLE_example_2022": {

"version": 1,
"api-version": "1.3.204",
"label": "Vulkan Example 2022 profile",
"description": "Description of Example 2022 profile",
"contributors": {

"Christophe Riccio": {
"company": "LunarG",
"email": "christophe@lunarg.com",
"contact": true

}
},
"history": [

{
"revision": 1,

April 2024 The Vulkan Profiles Tools 16

"date": "2021-12-08",
"author": "Christophe Riccio",
"comment": "Initial revision"

}
],
"profiles": [

"VP_LUNARG_minimum_requirements_1_3"
],
"capabilities": [

"requirements_roadmap2022"
]

}
}

}

Example of Vulkan Profiles file

A Vulkan Profiles JSON file has two main sections represented by respectively the
capabilities and profiles elements.

The capabilities element just stores blocks of Vulkan capabilities. These blocks may be
referenced or not by the profiles specified in the profiles elements.

The profiles elements contain elements that references required profiles and capabilities
blocks. To interpret the profile, it’s important to consider that if a required profile sets a capability
and then a required capabilities block sets the same capability then the value from the required
capability block overrides the value from the required profile. Similarly, the order in the array of
the required profiles matters because the values of the following profile overrides the value of
the previous profile. This applies also for the order in the array of required capabilities blocks.

Limitations of Vulkan Profiles schema validation
Unfortunately, a profile file would pass schema validation even if it requires a minimum Vulkan
API version but uses a Vulkan structure that was introduced after that specified Vulkan Header
revision. This makes the profile definition infringe upon its own requirements, which is indeed
incorrect. Unfortunately, vk.xml is a snapshot of a Vulkan Header revision for a specific Vulkan
API version, so it doesn’t store with which Vulkan Header revision a Vulkan capability was
introduced.

For this reason, we recommend using the Vulkan Profiles schema revision that matches the
Vulkan Profile API version minimum requirements. Many revisions of the profiles schema for
Vulkans Header are available on Khronos.org.

Similarly, the Profiles JSON Schema can’t validate a lot of the semantic aspects. For example,
the runtimeDescriptorArray Vulkan feature can be enabled using multiple structures:

April 2024 The Vulkan Profiles Tools 17

https://github.com/KhronosGroup/Vulkan-Headers/blob/main/registry/vk.xml
https://schema.khronos.org/vulkan/

Unset

Unset

VkPhysicalDeviceDescriptorIndexingFeaturesEXT,
VkPhysicalDeviceDescriptorIndexingFeatures, and VkPhysicalDeviceVulkan12Features.
Syntactically, all these structures can be used simultaneously for the definition of a profile; but
what happens if they are specified with different values?

To address these cases, we can use the Vulkan Profiles layer which reports warning messages.

Human readable Vulkan Profiles documentation
The Vulkan SDK provides a human readable documentation for Vulkan Profiles.

This table can be generated for any set of profiles using the following command:

python gen_profiles_solution.py
--registry vk.xml
--input ./my_profiles/
--output-doc ./PROFILES.md

For more information, use the following command:

python gen_profiles_solution.py --help

April 2024 The Vulkan Profiles Tools 18

https://vulkan.lunarg.com/doc/sdk/1.3.275.0/windows/profiles_definitions.html

Using the Vulkan Profiles layer

Simulation vs. Emulation
The primary function of the Vulkan Profiles Layer is to simulate the capabilities of a device,
modifying device responses to Vulkan query function calls by the application. Of course, the
underlying device or driver functionality is never actually changed; they merely appear to have
the capabilities of a different device or driver.

Effectively, the Vulkan Profiles layer is used for downgrading the Vulkan application developers’
system capabilities.

This is different from emulation which would change the actual behavior of the underlying device
or driver to match that of a different device or driver. In all but one case, the Profiles layer
simulates changes and leaves it up to the Validation Layer to inform the developer about
functions that do not adhere to the proper limits.

The one exception is the portability subset extension emulation, which causes the Profiles Layer
to add the VK_KHR_portability_subset extension to the device extensions list, and pre-populate
the VkPhysicalDevicePortabilitySubsetPropertiesKHR and
VkPhysicalDevicePortabilitySubsetFeaturesKHR structures of this extension with default values.

The VK_KHR_portability_subset emulation can be controlled using the Profiles layer settings.

Reducing Vulkan application development time
The Vulkan Profiles layer is expected to be used during Vulkan application development and
testing. It aims at drastically improving the way we test our Vulkan applications across a wide
range of hardware capabilities.

Typically when developing a Vulkan application, we need to check that our Vulkan application
works on a set of platforms, devices, and even Vulkan driver versions. However, this process
can be particularly tedious and time-consuming which translates into cutting some testing or
reducing support of old Vulkan drivers.

April 2024 The Vulkan Profiles Tools 19

Typical testing strategy, one device and driver at a time

The Vulkan Profiles and the Vulkan Profiles layer enable a new strategy: instead of checking
capabilities of a device and driver set at a time, the solution allows checking an entire range of
devices and drivers at a time by checking against a Vulkan profile that represents all these
devices, or better, the Vulkan application requirements directly.

Testing Vulkan capabilities support against a Vulkan profile

The Vulkan Profiles layer can be used for many use cases:
- Using continuous integration to ensure that the Vulkan application never adds

unintentional Vulkan capabilities requirements.
- Verifying that the Vulkan application falls back correctly when a driver doesn’t support a

capability, without updating the drivers or recompiling the Vulkan application.

April 2024 The Vulkan Profiles Tools 20

- Verifying whether a Vulkan application behavior on a machine is due to
the capabilities of that machine.

- Verifying the Vulkan application works on a less capable Vulkan device than the Vulkan
developer device.

- Verifying the Vulkan Profile is well formed, with no unexpected duplicated references of
Vulkan capabilities.

- Excluding device extensions and image formats to validate the robustness of the Vulkan
application.

- Etc.

Enabling the Profiles layer using Vulkan Configurator
We highly recommend using Vulkan Configurator to use Vulkan Layers to improve Vulkan
application development effectiveness.

Before Vulkan Configurator, a Vulkan developer would have to configure the layers either
programmatically or by using environment variables specified by the layers’ documentation,
which required a significant and continuous learning curve as the Vulkan layers’ capabilities
evolved.

Vulkan Configurator was created to present the Vulkan layers with an intuitive interface enabling
developers to use layer features with existing Vulkan applications, instantly and dramatically
reducing development iteration time, as no compilation, no learning of the new settings, and no
tracking of the new features are required. The features are directly available in the GUI.

When we open Vulkan Configurator, we are greeted with the following window.

April 2024 The Vulkan Profiles Tools 21

https://vulkan.lunarg.com/doc/sdk/latest/windows/vkconfig.html

April 2024 The Vulkan Profiles Tools 22

The Vulkan Configurator UI comprises six areas:

1) Vulkan Layers Management: this area controls whether the Vulkan Layers override is
active or not. It also determines whether the override is applied only to a selection of
Vulkan applications or to all Vulkan applications. Finally, this area specifies whether the
override remains active or not when Vulkan Configurator is closed.

2) Vulkan Layers Configurations: the list of pre-configured layers configurations. Vulkan
Configurator is installed with a selection of built-in configurations that are listed on the
screenshot. Each built-in configuration is designed to handle a specific Vulkan
application developer use case. Using the context menu, we can design user-defined
layer configurations to create layers configurations for our specific use cases.

3) Create a new layers configuration: edit, duplicate or remove the selected layers
configuration. The “Edit…” button allows opening the “Edit Vulkan Layers” window to
select the layers behavior with the following actions:

a) to override,
b) to exclude,
c) or to be handled by the Vulkan applications.

The “Edit Vulkan Layers...” window allows adding paths to find additional layers on the
system.

April 2024 The Vulkan Profiles Tools 23

4) Vulkan Application Launcher: this area allows running any Vulkan
application with the selected layers configuration.

5) Log window: on start-up, when selecting a layer configuration or updating the layers list
of a layer configuration, the log window will display the “Vulkan Development Status”
which reports the version of various components, relevant paths for Vulkan developers,
and the list of available layers. When launching a Vulkan application from Vulkan
Configurator, the log window will display anything sent to stdout or stderr from the Vulkan
layers, Vulkan applications, and the Vulkan Loader.

6) Layers configuration settings: the tree of settings for each layer. If the layers have setting
presets, they are displayed just below the layer name.

April 2024 The Vulkan Profiles Tools 24

Select the “Portability” built-in configuration from the “Vulkan Layers Configurations” list:

This configuration includes the Vulkan Validation layer and the Vulkan Profiles layer.
To the right, we can see the layers settings. Among this setting, there is the setting “Emulate
VK_KHR_portability_subset” with each capability listed.

April 2024 The Vulkan Profiles Tools 25

We can hide the Vulkan Validation layer settings for now by clicking the caret next to
VK_LAYER_KHRONOS_validation and observing the Vulkan Profiles layer settings.

Selecting the notification message type, we get additional logging information to understand
how the Vulkan Profiles layer behaves.

April 2024 The Vulkan Profiles Tools 26

Vulkan layers can also be configured using environment variables, and programmatically using
the VK_EXT_layer_settings extensions. For additional information on layer settings, have a
look at the Configuring Vulkan Layers.

Vulkan Profiles layer limitations
The Vulkan Profiles layer only changes the reported capabilities of a Vulkan driver. Used
together with the Vulkan Validation layer, the solution will report errors when running Vulkan
applications that use capabilities that are not reported by the layer.

However, the Vulkan Profiles layer is limited in that it doesn’t emulate Vulkan capabilities.
Hence, we are expecting it to be used on Vulkan developers’ machines which we think will

April 2024 The Vulkan Profiles Tools 27

https://vulkan.lunarg.com/doc/sdk/latest/windows/profiles_layer.html

effectively support more capabilities than the majority of the targeted devices in
the Vulkan ecosystem by the Vulkan applications.

Furthermore, each operating system implements platform specific extensions. Hence, testing on
all required operating systems remains necessary for full Vulkan capabilities requirements
verification.

Also, it’s not impossible that a Vulkan driver reports a supported capability that is effectively not
usable because of a Vulkan driver bug. The Vulkan Profiles layer will not help for such cases,
but we are hoping for Vulkan Profile definitions to help document such scenarios.

Finally, and probably most importantly, the Vulkan Profiles layer doesn’t help with device
performance testing; but we are hoping using the Vulkan Profiles layer will free some
development cycles for Vulkan developers to focus on this essential aspect of application
development.

April 2024 The Vulkan Profiles Tools 28

Using the Vulkan Profiles API library
The Vulkan Profiles API library is a generated helper C++ with a C interface library for Vulkan
application developers that provides the following set of APIs:

● APIs to verify instance-level and device-level support for selected Vulkan profiles and/or
Vulkan profile blocks.

● Instance and device creation APIs that automatically enable the extensions and features
required by Vulkan profiles and/or Vulkan profile blocks.

● Capability introspection APIs to query the extensions, features, properties, formats, and
queue families required by a particular Vulkan profile.

We typically expect that it would be trivial for a Vulkan application to integrate the Vulkan
Profiles API library to check the support of Vulkan Profiles but harder to create VkDevice and
VkInstance instances with the Vulkan Profiles API library. It is not necessary to use both
capabilities.

Checking the support of Vulkan Profiles in the Vulkan application using a Vulkan Profiles API
library generated from the Vulkan Profiles that represent the rendering code paths of this Vulkan
application, ensure the Vulkan requirements of these rendering code paths remain correctly
documented.

This Vulkan Profiles checking also gives a single point of failure in the Vulkan application code
to exit cleanly, or choose other rendering code paths. We can expect that the code will be
scattered with a lot of asserts to check capability requirements, or that the Vulkan application
developer will rely on the Validation layer.

A Vulkan sample using the Vulkan Profiles library is available in the Khronos Vulkan Samples
repository.

Integration of the Vulkan Profiles API library in an application
The Vulkan Profiles API library is provided as a header-only, C++ library
(vulkan/vulkan_profiles.hpp) that is bundled with the Vulkan SDK. C++ applications thus can
simply use the Vulkan Profiles API library by including this header-only, C++ library with no
Vulkan application build system changes.

The library is primarily designed to be dynamically linked to the Vulkan implementation (loader
or ICD). If applications want to dynamically load Vulkan then they have to make sure (one way
or another) that the Vulkan API symbols seen by the Vulkan Profiles header-only library are
valid and correspond to the dynamically loaded entry points.

April 2024 The Vulkan Profiles Tools 29

https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/tooling/profiles/README.md
https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/tooling/profiles/README.md
https://vulkan.lunarg.com/

Unset

In order to enable support for other language bindings, the library is also
available in a header + source pair (vulkan_profiles.h and vulkan_profiles.cpp). In the
Vulkan Profiles repository, there is no build configuration for this variant of the library, as it's not
meant to be used as a standalone static or dynamic library. Instead, developers can incorporate
the files into their own project to build the Vulkan profiles library into it. This may also be useful if
the developer would like to optimize compilation times by not having to include the rather large
header-only library in multiple source files.

The repository also contains a debug version of the Vulkan Profiles API library which allows
logging unsupported capabilities of a Vulkan Profile when checking its support on a system.

The profile definitions are enabled depending on the preprocessor definitions coming from the
Vulkan headers; thus the application has to make sure to configure the right set of preprocessor
definitions. As an example, the VP_ANDROID_baseline_2021 profile depends on the
VK_KHR_android_surface instance extension; thus in order to use this profile, the application
must define VK_USE_PLATFORM_ANDROID_KHR.

Generating Vulkan Profiles API library
The Vulkan Profiles API library is a generated header-only, C++ library. It doesn’t support
loading dynamically Vulkan Profiles because the solution provides the simplest integration to an
engine codebase. In most cases a Vulkan application can’t just load a profile, it implements that
profile within the codebase. Hence, the Vulkan Profiles API library just simplifies the initialization
code of that implementation.

The Vulkan Profiles API library shipping with the Vulkan SDK serves mostly as an example
because it bakes many profiles, most of them being useful for only very restricted scenarios. We
expect that most Vulkan developers may be interested in creating their own profiles and
generate a copy of the Vulkan Profiles API library for their profiles.

The gen_profiles_solution.py python script is used to generate the Vulkan Profiles API library
and is delivered as part of the Vulkan SDK in the share/vulkan/registry directory. Following, a
command line example:

python gen_profiles_solution.py
--registry vk.xml
--input ./my_profiles/
--output-library-inc ./my_library/
--output-library-src ./my_library/
--debug

April 2024 The Vulkan Profiles Tools 30

https://github.com/KhronosGroup/Vulkan-Profiles/blob/master/library/include/vulkan/vulkan_profiles.h
https://github.com/KhronosGroup/Vulkan-Profiles/blob/master/library/source/vulkan_profiles.cpp
https://github.com/KhronosGroup/Vulkan-Profiles

Unset

The --debug argument is optional and useful during the development phase for
the Vulkan Profiles API library to output useful debug information.

For more information on how to use gen_profiles_solution.py, we can use the command:

python gen_profiles_solution.py --help

Alternatively, the Vulkan Profiles API library can be trivially generated from the Vulkan Profiles
repository to include support for any desired Vulkan Profiles. The Vulkan developer just needs to
clone the Vulkan Profiles repository and replace the list of profiles files and edit the
${PROFILES_FILES_FOR_API_LIBRARY} in the CMake file variable before rebuilding the project
and grabbing the regenerated vulkan_profiles.hpp to check it in the project repository.

Basic usage of the Vulkan Profiles API library
A usage of the Vulkan Profiles API library is for Vulkan application developers to check, on the
users systems, the support of the Vulkan Profiles they created to reflect on the Vulkan
capabilities required by the Vulkan applications rendering code paths. Then when the list of
available code paths are figured out and one is selected from this list, the Vulkan applications
developers can leave it to the Vulkan Profiles API library to enable any necessary extensions
and features required by that profile.

In order to do so, first the Vulkan application has to create a VpCapabilities object.

#define VP_USE_OBJECT 1 // Required while the VpCapabilities API remains in BETA

#include <vulkan/vulkan_profiles.hpp> // Or the path for the Vulkan application

…

VpCapabilities capabilities = VK_NULL_HANDLE;

VpCapabilitiesCreateInfo createInfo;

createInfo.apiVersion = VK_API_VERSION_1_1;

createInfo.flags = VP_PROFILE_CREATE_STATIC_BIT;

VkResult result = vpCreateCapabilities(&createInfo, nullptr, &capabilities);

if (result != VK_SUCCESS) {

// something went wrong

...

}

The VpCapabilitiesCreateInfo structure contains the pVulkanFunctions member which can be
used to externally load Vulkan functions.

April 2024 The Vulkan Profiles Tools 31

https://github.com/KhronosGroup/Vulkan-Profiles
https://github.com/KhronosGroup/Vulkan-Profiles/tree/master/profiles
https://github.com/KhronosGroup/Vulkan-Profiles/blob/vulkan-sdk-1.3.275/profiles/CMakeLists.txt
https://github.com/KhronosGroup/Vulkan-Profiles/tree/master/library/include/vulkan

Then the application has to make sure that the Vulkan implementation supports
the selected profile as follows:

VkBool32 supported = VK_FALSE;

VpProfileProperties profile{

VP_LUNARG_DESKTOP_BASELINE_2024_NAME, VP_LUNARG_DESKTOP_BASELINE_2024_SPEC_VERSION

};

VkResult result = vpGetInstanceProfileSupport(capabilities, nullptr, &profile, &supported);

if (result != VK_SUCCESS) {

// something went wrong

...

}

else if (supported != VK_TRUE) {

// profile is not supported at the instance level

...

}

The above code example verifies the instance-level profile requirements of the
VP_LUNARG_desktop_baseline_2024 profile, including required API version and instance
extensions.

If the profile is supported by the Vulkan implementation at the instance level, then a Vulkan
instance can be created with the instance extensions required by the profile as follows:

VkApplicationInfo vkAppInfo{ VK_STRUCTURE_TYPE_APPLICATION_INFO };

// Set API version to the minimum API version required by the profile
vkAppInfo.apiVersion = VP_LUNARG_DESKTOP_BASELINE_2024_MIN_API_VERSION;
VkInstanceCreateInfo vkCreateInfo{ VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO };
vkCreateInfo.pApplicationInfo = &vkAppInfo;
// set up your own instance creation parameters, except instance extensions
// as those will come from the profile
...

VpInstanceCreateInfo vpCreateInfo{};
createInfo.pCreateInfo = &vkCreateInfo;
createInfo.enabledFullProfileCount = 1;
createInfo.pEnabledFullProfiles = &profile;

VkInstance instance = VK_NULL_HANDLE;
result = vpCreateInstance(capabilities, &vpCreateInfo, nullptr, &instance);
if (result != VK_SUCCESS) {

// something went wrong
...

}

The above code example will create a Vulkan instance with the API version and instance
extensions required by the profile (unless the application overrides any of them, as explained
later).

Make sure to set the apiVersion in the VkApplicationInfo structure at least to the minimum API
version required by the profile, as seen above, to ensure the correct Vulkan API version is used.

April 2024 The Vulkan Profiles Tools 32

Once a Vulkan instance is created, the application can check whether individual
physical devices support the selected profile as follows:

result = vpGetPhysicalDeviceProfileSupport(
capabilities, instance, physicalDevice, &profile, &supported);

if (result != VK_SUCCESS) {
// something went wrong
...

}
else if (supported != VK_TRUE) {

// profile is not supported at the device level
...

}

Finally, once a physical device supporting the profile is selected, a Vulkan device can be created
with the device extensions and features required by the profile as follows:

VkDeviceCreateInfo vkCreateInfo{ VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO };
// set up your own device creation parameters, except device extensions
// and device features as those will come from the profile
...

VpDeviceCreateInfo vpCreateInfo{};
createInfo.pCreateInfo = &vkCreateInfo;
createInfo.pProfile = &profile;

VkDevice device = VK_NULL_HANDLE;
result = vpCreateDevice(capabilities, physicalDevice, &vpCreateInfo, nullptr, &device);
if (result != VK_SUCCESS) {

// something went wrong
...

}

Advanced usage of the Vulkan Profiles library
The Vulkan Profiles library provides many functionalities to extend Vulkan Profiles with
additional capabilities or even alter Vulkan Profiles to drop some requirements according to
Vulkan developers needs. All these functionalities are described in the Vulkan Profiles library
documentation.

For more information on the Vulkan Profiles Library API, have a look at the API reference.

April 2024 The Vulkan Profiles Tools 33

https://github.com/KhronosGroup/Vulkan-Profiles/blob/master/library/TUTORIAL.md#advanced-usage
https://github.com/KhronosGroup/Vulkan-Profiles/blob/master/library/TUTORIAL.md#advanced-usage
https://github.com/KhronosGroup/Vulkan-Profiles/blob/master/library/TUTORIAL.md#api-reference

Vulkan Profiles Tools future improvements
● It would be nice to be able to emulate with the Vulkan Profiles Layer more precisely the

capabilities expressed in a Vulkan Profile by selecting capability blocks individually.
● It would be convenient to be able to run the Vulkan Profiles generator scripts from

Vulkan Configurator, to quickly iterate between updating Vulkan Engine profiles and
regenerating the Vulkan Profiles API library and Vulkan Profiles documentation.

● It would be interesting to add a new operator to the merge script to generate a profile
that lists all the capabilities of a source (engine) profile that are not supported by a
destination (platform) profile.

● Add dependencies between features and properties: some capabilities change values
depending on whether some features or extensions are supported or not. For example,
pointSizeRange depends on largePoints.

● It would be a good addition to provide a library form of Vulkaninfo so that any Vulkan
tool could generate Vulkan Profiles files easily, for example, to integrate the Vulkan
capabilities of the system into a crash log.

April 2024 The Vulkan Profiles Tools 34

https://vulkan.lunarg.com/doc/view/latest/windows/vulkaninfo.html

Revision History

Revision Date SDK Release Comments

April 2024 SDK 1.3.280.0 - Introduce Capabilities object and externally loaded Vulkan
functions.
- Add Vulkan profiles combination script.
- Various bug fixes.

January 2024 SDK 1.3.275.0 - Add a section for user examples of Vulkan Profiles.
- Add information about the profiles merge script.
- Update Vulkan Profiles API Library section, API changes.
- Update Vulkan Layer: VK_KHR_portability_subset
settings.
- Update future improvements section.

January 2022 SDK 1.3.204.0 - Initial release.

April 2024 The Vulkan Profiles Tools 35

