
Configuring Vulkan Layers
A consistent approach to configure layers

Christophe Riccio, LunarG
April 2024

1

https://www.lunarg.com/

Configuring Vulkan Layers approaches 3
Configuring Layers using the Vulkan API 5

Enabling and ordering the layer using vkCreateInstance() 5
Code example to enable and order the validation and the profiles layers
programmatically: 5

Configuring the layer settings using VK_EXT_layer_settings 5
Code example to configure the validation layer programmatically: 6

Configuring Layers using Vulkan Configurator 8
The Vulkan Configurator interface 9
Enabling and ordering layers (VkLayer_override.json) 13

The override layer file on Linux and macOS 13
The override layer file on Windows 14

Configuring the layers (vk_layer_settings.txt) 14
Example of vk_layer_settings.txt file: 14
Layer Settings File location on Linux and macOS 15
Layer Settings File location on Windows 15

Configuring Layers using Environment Variables 15
Finding Vulkan Layers 15
Activating Specific SDK Layers 16

Usages on each desktop platform 16
Enabling and ordering Vulkan Layers 17

Vulkan 1.3.234 Loader and Newer (VK_LOADER_LAYERS_ENABLE) 17
Usages on each desktop platform 18

Example Usage On Windows: 18
Example Usage On Linux/macOS: 18

Older Vulkan Loaders (VK_INSTANCE_LAYERS) 18
Example Usage On Windows: 19
Example Usage On Linux/macOS: 19

Layer Settings Environment Variables 19
Examples of environment variable variants for a single setting: 20
Examples Usage on Windows: 20
Examples Usage on Linux/macOS: 20

Revision History 21

April 2024 Configuring Vulkan Layers 2

Configuring Vulkan Layers approaches
Vulkan supports intercepting or hooking API entry points via a layer framework. A layer
can intercept all or any subset of Vulkan API entry points. Multiple layers can be
chained together to cascade their functionality in the appearance of a single, larger
layer.

Vulkan layers allow application developers to add functionality to Vulkan applications
without modifying the application itself, e.g., validating API usages, dumping API entry
points or generating screenshots of specified frames.

Vulkan layers can be configured using Vulkan layer settings through three different
methods to match specific Vulkan developers' workflows:

● Using the Vulkan API: vkCreateInstance() and VK_EXT_layer_settings.
● Using the vk_layer_settings.txt file, that can be generated by the GUI interface

called Vulkan Configurator.
● Using environment variables.

These three methods are implemented by the Vulkan Layer Settings library part of the
Vulkan-Utility-Libraries repository. Any layer project that uses this library will provide
these three methods to control layer settings, bringing consistency and ease of use of
layers to the Vulkan community.

The Vulkan Layer Settings library is currently used by the Vulkan Validation layer, the
Vulkan Profiles layer, the Vulkan Extension layers and the LunarG Utility layers.

Configuring layers means multiple tasks: Enabling layers; Ordering layers; Configuring
the layers capabilities. These three aspects are described with each method to
configure layers.

April 2024 Configuring Vulkan Layers 3

https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/vkCreateInstance.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_EXT_layer_settings.html
https://vulkan.lunarg.com/doc/view/1.3.268.0/windows/vkconfig.html
https://github.com/KhronosGroup/Vulkan-Utility-Libraries
https://github.com/KhronosGroup/Vulkan-ValidationLayers
https://github.com/KhronosGroup/Vulkan-Profiles
https://github.com/KhronosGroup/Vulkan-ExtensionLayer/
https://github.com/LunarG/VulkanTools

Example of system configured with enabled and ordered layers on the Vulkan developer system

Since a setting can be set via multiple methods simultaneously here is the priority order:

1. Environment variables (Which overrides the values set by the two others
methods)

2. vk_layer_settings.txt

3. VK_EXT_layer_settings Vulkan extension

All the settings are described in the JSON layer manifest file that ships with the layer
binary. When the settings are implemented in a layer using the Vulkan Layer Settings
library, all the settings can be configured with all three methods.

Guideline: Settings which are unknown by the layer will be ignored independently of the
method. It's the responsibility of the layer developer to ensure backward compatibility
with previous versions of the layer. This is to ensure the list of layer settings remain
relatively stable across versions and that the responsibility of handling layer backward
compatibility doesn't fall on Vulkan application developers as this could quickly become
untrackable.

April 2024 Configuring Vulkan Layers 4

C/C++

Configuring Layers using the Vulkan API

Enabling and ordering the layer using vkCreateInstance()

Applications may programmatically activate layers via the vkCreateInstance() entry
point. This is done by setting enabledLayerCount and ppEnabledLayerNames in the
VkInstanceCreateInfo structure.

The layer names order in ppEnabledLayerNames specifies the layers execution ordering
from closer to the Vulkan application to closer to the Vulkan driver.

Code example to enable and order the validation and the profiles
layers programmatically:

const VkApplicationInfo app_info = initAppInfo();

const char* layers[] = {
"VK_LAYER_KHRONOS_validation",
"VK_LAYER_KHRONOS_profiles"};

const VkInstanceCreateInfo inst_create_info = {
VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, nullptr, 0,
&app_info,
static_cast<uint32_t>(std::size(layers)), layers,
0, nullptr};

VkInstance instance = VK_NULL_HANDLE;
VkResult result = vkCreateInstance(&inst_create_info, nullptr, &instance);

In this example, the Khronos validation layer will be called before the Khronos profiles
layer, it’s called closer to the Vulkan application than the Vulkan driver.

Configuring the layer settings using VK_EXT_layer_settings

April 2024 Configuring Vulkan Layers 5

C/C++

Layer settings may be configured using the VK_EXT_layer_settings extension by
initializing the VkLayerSettingsCreateInfoEXT structure and chaining it to the pNext of
VkInstanceCreateInfo when creating a Vulkan instance.

Code example to configure the validation layer programmatically:

const char* name = "VK_LAYER_KHRONOS_validation";

const VkBool32 setting_validate_core = VK_TRUE;
const VkBool32 setting_validate_sync = VK_TRUE;
const VkBool32 setting_thread_safety = VK_TRUE;
const char* setting_debug_action[] = {"VK_DBG_LAYER_ACTION_LOG_MSG"};
const char* setting_report_flags[] = {

"info", "warn", "perf", "error", "debug"};
const VkBool32 setting_enable_message_limit = VK_TRUE;
const int32_t setting_duplicate_message_limit = 3;

const VkLayerSettingEXT settings[] = {
{name, "validate_core", VK_LAYER_SETTING_TYPE_BOOL32_EXT,
1, &setting_validate_core},
{name, "validate_sync", VK_LAYER_SETTING_TYPE_BOOL32_EXT,
1, &setting_validate_sync},
{name, "thread_safety", VK_LAYER_SETTING_TYPE_BOOL32_EXT,
1, &setting_thread_safety},
{name, "debug_action", VK_LAYER_SETTING_TYPE_STRING_EXT,
1, setting_debug_action},
{name, "report_flags", VK_LAYER_SETTING_TYPE_STRING_EXT,
static_cast<uint32_t>(std::size(setting_report_flags)),
setting_report_flags}
{name, "enable_message_limit", VK_LAYER_SETTING_TYPE_BOOL32_EXT,
1, &setting_enable_message_limit},
{name, "duplicate_message_limit", VK_LAYER_SETTING_TYPE_INT32_EXT,
1, &setting_duplicate_message_limit}};

const VkLayerSettingsCreateInfoEXT layer_settings_create_info = {
VK_STRUCTURE_TYPE_LAYER_SETTINGS_CREATE_INFO_EXT, nullptr,
static_cast<uint32_t>(std::size(settings)), settings};

const VkApplicationInfo app_info = initAppInfo();

const char* layers[] = {name};
const char* extensions[] = {VK_EXT_LAYER_SETTINGS_EXTENSION_NAME};

April 2024 Configuring Vulkan Layers 6

const VkInstanceCreateInfo inst_create_info = {
VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, &layer_settings_create_info,
0,
&app_info,
static_cast<uint32_t>(std::size(layers)), layers,
static_cast<uint32_t>(std::size(extensions)), extensions

};

VkInstance instance = VK_NULL_HANDLE;

VkResult result = vkCreateInstance(
&inst_create_info, nullptr, &instance);

April 2024 Configuring Vulkan Layers 7

Configuring Layers using Vulkan Configurator
Vulkan developers can configure layers through a graphical user interface. Vulkan
Configurator allows full user control of Vulkan layers, including enabling or disabling
specific layers, controlling layer order, changing layer settings, etc. Vulkan Configurator
configures the layers by applying a global system configuration of the Vulkan loader and
creating a vk_layer_settings.txt file that will be found by any layer.

Vulkan Configurator can be used using the command line to configure the system
environment. Use the command vkconfig --help for more information.

We recommend using the Vulkan Configurator GUI approach for Vulkan application
developers. It's the most effective approach to switch between multiple layer
configurations and quickly iterate during development. Additionally, Vulkan Configurator
presents to the Vulkan application developers the layers found on the system and the
settings of each layer, allowing Vulkan application developers to discover new
functionality from the GUI without having to dig into each layer's documentation.

April 2024 Configuring Vulkan Layers 8

The Vulkan Configurator interface
Before Vulkan Configurator, a Vulkan developer would have to configure the layers
either programmatically or by using environment variables specified by the layers
documentation, which required a significant and continuous learning curve as the
Vulkan layers capabilities evolved.

Vulkan Configurator was created to present the Vulkan layers with an intuitive interface
enabling developers to use layer features with existing Vulkan applications, instantly
and dramatically reducing development iteration time as no compilation, no learning of
the new settings, and no tracking of the new features is required. The features are
directly available in the GUI.

The Vulkan Configurator UI comprises six areas:

1) Vulkan Layers Management: this area controls whether the Vulkan Layers
override is active or not. It also determines whether the override is applied only to
a selection of Vulkan applications or to all Vulkan applications. Finally, this area

April 2024 Configuring Vulkan Layers 9

specifies whether the override remains active or not when Vulkan Configurator is
closed.

2) Vulkan Layers Configurations: the list of pre-configured layers configurations.
Vulkan Configurator is installed with a selection of built-in configurations that are
listed on the screenshot. Each built-in configuration is designed to handle a
specific Vulkan application developer use case. Using the context menu, we can
design user-defined layer configurations to create layers configurations for our
specific use cases.

3) Create a new layers configuration ; edit, duplicate or remove the selected layers
configuration. The “Edit…” button allows opening the “Edit Vulkan Layers”
window to select the layers behavior with the following actions:

a) to override,
b) to exclude,
c) or to be handled by the Vulkan applications.

The “Edit Vulkan Layers...” window allows adding paths to find additional layers
on the system.

4) Vulkan Application Launcher: this area allows running any Vulkan application
with the selected layers configuration.

5) Log window: on start-up, when selecting a layer configuration or updating the
layers list of a layer configuration, the log window will display the “Vulkan
Development Status” which reports the version of various components, relevant
paths for Vulkan developers, and the list of available layers. When launching a
Vulkan application from Vulkan Configurator, the log window will display anything
sent to stdout or stderr from the Vulkan layers, Vulkan applications, and the
Vulkan Loader.

6) Layers configuration settings: the tree of settings for each layer. If the layers have
setting presets, they are displayed just below the layer name.

April 2024 Configuring Vulkan Layers 10

Select the “Portability” built-in configuration from the “Vulkan Layers Configurations” list.

This configuration includes the Vulkan Validation layer and the Vulkan Profiles layer.

On the right panel, we can see the layers settings.

April 2024 Configuring Vulkan Layers 11

We can hide the layer settings of a specific layer by clicking the carrot next to the layer
name.

April 2024 Configuring Vulkan Layers 12

For more information about the tool is available in the Vulkan Configurator
documentation

Enabling and ordering layers (VkLayer_override.json)
To control the enabled layers and the layer order, Vulkan Configurator generates the
VkLayer_override.json file, which is consumed by the Vulkan loader to enable Vulkan
layers and control the order of the layers. This file also stores the user-defined paths
specified in Vulkan Configurator to find additional layers.

The override layer file on Linux and macOS
Unix systems store override layer file in the following paths:

April 2024 Configuring Vulkan Layers 13

https://vulkan.lunarg.com/doc/sdk/latest/windows/vkconfig.html
https://vulkan.lunarg.com/doc/sdk/latest/windows/vkconfig.html

Unset

● $HOME/.local/share/vulkan/implicit_layer.d/VkLayer_override.json

The override layer file on Windows
Windows systems store the override layer file in the following path:

● %HOME%\AppData\Local\LunarG\vkconfig\override\VkLayerOverride.json

Configuring the layers (vk_layer_settings.txt)
To control the layer settings, Vulkan Configurator generates the vk_layer_settings.txt

file which is consumed by the Vulkan layers and sets the setting values defined by the
Vulkan developers using the UI.

By default, the Vulkan Layer Settings library requires the settings file to be named
vk_layer_settings.txt and it will search it in the working directory of the targeted
application. Hence, if a file is found in the working directory of the targeted application,
the Vulkan Layer Settings library will bypass the layer settings created by Vulkan
Configurator. If VK_LAYER_SETTINGS_PATH is set and is a directory, then the settings file
must be a file called vk_layer_settings.txt in the directory given by
VK_LAYER_SETTINGS_PATH. If VK_LAYER_SETTINGS_PATH is set and is not a directory, then it
must point to a file (with any name) which is the layer settings file.

The settings file can be created, modified or generated by the Vulkan application
developers or third party tools. The settings file consists of comment lines and settings
lines. Comment lines begin with the # character. Settings lines have the following
format:

<LayerName>.<setting_name> = <setting_value>

The list of available settings is available in the layer manifest.

Example of vk_layer_settings.txt file:

The main, heavy-duty validation checks. This may be valuable early in the

development cycle to reduce validation output while correcting

parameter/object usage errors.

khronos_validation.validate_core = true

Enable synchronization validation during command buffers recording. This

feature reports resource access conflicts due to missing or incorrect

April 2024 Configuring Vulkan Layers 14

synchronization operations between actions (Draw, Copy, Dispatch, Blit)

reading or writing the same regions of memory.

khronos_validation.validate_sync = true

Thread checks. In order to not degrade performance, it might be best to run

your program with thread-checking disabled most of the time, enabling it

occasionally for a quick sanity check or when debugging difficult

application behaviors.

khronos_validation.thread_safety = true

Specifies what action is to be taken when a layer reports information

khronos_validation.debug_action = VK_DBG_LAYER_ACTION_LOG_MSG

Comma-delineated list of options specifying the types of messages to be

reported

khronos_validation.report_flags = debug,error,perf,info,warn

Enable limiting of duplicate messages.

khronos_validation.enable_message_limit = true

Maximum number of times any single validation message should be reported.

khronos_validation.duplicate_message_limit = 3

Layer Settings File location on Linux and macOS
Unix systems store the layer setting file in the following path:

● $HOME/.local/share/vulkan/settings.d/vk_layer_settings.txt

Layer Settings File location on Windows
Windows systems store the layer setting file in the following path:

● %HOME%\AppData\Local\LunarG\vkconfig\override\vk_layer_settings.txt

Configuring Layers using Environment Variables

Finding Vulkan Layers
In order to enable a Vulkan layer from the command-line, you must first make sure:

April 2024 Configuring Vulkan Layers 15

Unset

1. The layer's Manifest JSON file is found by the Vulkan Desktop Loader because it
is in:

○ One of the standard operating system install paths
○ It was added using one of the layer path environment variables

(VK_LAYER_PATH or VK_ADD_LAYER_PATH).
○ See the Layer Discovery section of the Vulkan Loader's Layer Interface

doc.
2. The layer's library file is able to be loaded by the Vulkan Desktop Loader

because it is in:
○ A standard library path for the operating system
○ The library path has been updated using an operating system-specific

mechanism such as:
■ Linux: adding the path to the layer's library .so with LD_LIBRARY_PATH

■ MacOS: adding the path to the layer's library .dylib with
DYLD_LIBRARY_PATH

3. The layer's library file is compiled for the same target and bitdepth (32 vs 64) as
the application

Activating Specific SDK Layers
To activate layers located in a particular SDK installation, or layers built locally from
source, specify the layer JSON manifest file directory using either VK_LAYER_PATH or
VK_ADD_LAYER_PATH. The difference between VK_LAYER_PATH and VK_ADD_LAYER_PATH is that
VK_LAYER_PATH overrides the system layer paths so that no system layers are loaded by
default unless their path is added to the environment variable. VK_ADD_LAYER_PATH on the
other hand, causes the loader to search the additional layer paths listed in the
environment variable first, and then the standard system paths will be searched.

Usages on each desktop platform
For example, if a Vulkan SDK is installed in C:\VulkanSDK\1.3.261.0, execute the
following in a Command Window:

C:\> set VK_LAYER_PATH=C:\VulkanSDK\1.3.261.0\Bin

April 2024 Configuring Vulkan Layers 16

https://github.com/KhronosGroup/Vulkan-Loader/blob/vulkan-sdk-1.3.280/docs/LoaderInterfaceArchitecture.md
https://github.com/KhronosGroup/Vulkan-Loader/blob/vulkan-sdk-1.3.280/docs/LoaderInterfaceArchitecture.md

Unset

Unset

For Linux, if Vulkan SDK 1.3.261.0 was locally installed in /sdk and
VULKAN_SDK=/sdk/1.3.261.0/x86_64:

$ export VK_LAYER_PATH=$VULKAN_SDK/lib/vulkan/layers

$ export LD_LIBRARY_PATH=$VULKAN_SDK/lib:$VULKAN_SDK/lib/vulkan/layers

For macOS, if Vulkan SDK 1.3.261.0 was locally installed in /sdk and
VULKAN_SDK=/sdk/1.3.261/macOS:

$ export VK_LAYER_PATH=$VULKAN_SDK/share/vulkan/explicit_layers.d

$ export DYLD_LIBRARY_PATH=$VULKAN_SDK/lib

Enabling and ordering Vulkan Layers
Originally, the Vulkan Desktop Loader provided VK_INSTANCE_LAYERS to enable layers from
the command-line. However, starting with the Vulkan Loader built against the 1.3.234
Vulkan headers, the VK_LOADER_LAYERS_ENABLE environment variable was added to allow
for more easily enabling Vulkan layers. The newer Loaders will continue to accept the
original VK_INSTANCE_LAYERS environment variable for some time, but it is considered
deprecated.

Vulkan 1.3.234 Loader and Newer (VK_LOADER_LAYERS_ENABLE)
The easiest way to enable a layer with a more recent drop of the Vulkan Loader is using
the VK_LOADER_LAYERS_ENABLE environment variable. This environment variable accepts a
case-insensitive, comma-delimited list of globs which can be used to define the layers to
load.

For example, previously if you wanted to enable the Profiles layer and the Validation
layer, you would have to set VK_INSTANCE_LAYERS equal to the full name of each layer:

April 2024 Configuring Vulkan Layers 17

Unset

Unset

Unset

Unset

VK_INSTANCE_LAYERS=VK_LAYER_KHRONOS_validation;VK_LAYER_KHRONOS_profiles

Now, with VK_LOADER_LAYERS_ENABLE, you simply can use stars where you don't want to fill
in the full name:

VK_LOADER_LAYERS_ENABLE=*validation,*profiles

Note that order is relevant, with the initial layer being the closest to the application, and
the final layer being closest to the driver. In this example, the Khronos validation layer
will be called before the Khronos profiles layer.

Usages on each desktop platform

Example Usage On Windows:

C:\> set VK_LOADER_LAYERS_ENABLE=*validation,*profiles

Example Usage On Linux/macOS:

$ export VK_LOADER_LAYERS_ENABLE=*validation,*profiles

More info about the new layer filtering environment variables can be found in the Layer

Filtering section of the Loader Layer Documentation.

Older Vulkan Loaders (VK_INSTANCE_LAYERS)
Vulkan Desktop loaders version 1.3.233 and below will not accept the filtering
environment variable, and so must continue using the original VK_INSTANCE_LAYERS

environment variable.

April 2024 Configuring Vulkan Layers 18

https://github.com/KhronosGroup/Vulkan-Loader/blob/vulkan-sdk-1.3.280/docs/LoaderInterfaceArchitecture.md

Unset

Unset

Example Usage On Windows:

The variable should include a semicolon-separated list of layer names to activate. Note
that order is relevant, with the initial layer being the closest to the application, and the
final layer being closest to the driver.

C:\> set

VK_INSTANCE_LAYERS=VK_LAYER_KHRONOS_validation;VK_LAYER_KHRONOS_profiles

In this example, the Khronos validation layer will be called before the Khronos profiles
layer. VK_INSTANCE_LAYERS may also be set in the system environment variables.

Example Usage On Linux/macOS:

The variable should include a colon-separated list of layer names to activate. Note that
order is relevant, with the initial layer being the closest to the application, and the final
layer being closest to the driver.

$ export

VK_INSTANCE_LAYERS=VK_LAYER_KHRONOS_validation:VK_LAYER_KHRONOS_profiles

In this example, the Khronos validation layer will be called before the Khronos profiles
layer.

Layer Settings Environment Variables
The settings can also be set using environment variables. The settings that can be set
using environment variables are listed in the documentation for each supported layer. If
an environment variable is set, its value takes precedence over the value in the settings
file.

The environment variable names for the layer settings have multiple variants that
follows the format:

● VK_<LayerVendor>_<*LayerName*><*setting_name*> which take

precedence over:

● VK_<*LayerName*><*setting_name*> which take precedence over:

April 2024 Configuring Vulkan Layers 19

Unset

Unset

● VK_<*setting_name*>`

This approach allows sharing the same setting name for potentially multiple layers but
still use different values for the same setting name if this is what is required for the
Vulkan developer use case.

Examples of environment variable variants for a single setting:

● VK_KHRONOS_VALIDATION_DEBUG_ACTION

● VK_VALIDATION_DEBUG_ACTION

● VK_DEBUG_ACTION

Examples Usage on Windows:

C:\> set VK_VALIDATION_VALIDATE_CORE=true

C:\> set VK_VALIDATION_VALIDATE_SYNC=true

C:\> set VK_VALIDATION_THREAD_SAFETY=true

C:\> set VK_VALIDATION_DEBUG_ACTION=VK_DBG_LAYER_ACTION_LOG_MSG

C:\> set VK_VALIDATION_REPORT_FLAGS=debug;error;perf;info;warn

C:\> set VK_VALIDATION_ENABLE_MESSAGE_LIMIT=true

C:\> set VK_VALIDATION_DUPLICATE_MESSAGE_LIMIT=3

Examples Usage on Linux/macOS:

$ export VK_VALIDATION_VALIDATE_CORE=true

$ export VK_VALIDATION_VALIDATE_SYNC=true

$ export VK_VALIDATION_THREAD_SAFETY=true

$ export VK_VALIDATION_DEBUG_ACTION=VK_DBG_LAYER_ACTION_LOG_MSG

$ export VK_VALIDATION_REPORT_FLAGS=debug:error:perf:info:warn

$ export VK_VALIDATION_ENABLE_MESSAGE_LIMIT=true

$ export VK_VALIDATION_DUPLICATE_MESSAGE_LIMIT=3

April 2024 Configuring Vulkan Layers 20

Revision History

Revision Date SDK Release Comments

April 2024 SDK 1.3.280.0 - Fix VK_EXT_layer_settings usage example.

January 2024 SDK 1.3.275.0 - Initial release.

Vulkan and the Vulkan logo are registered trademarks of the Khronos Group Inc.

April 2024 Configuring Vulkan Layers 21

