
03-14-2024

White Paper: Cross-stage Shader Optimization
Greg Fischer, Senior Engineer
LunarG Inc.

This white paper describes functionality in spriv-tools and glslang which allows the user to do
dead code elimination in SPIR-V shaders across stages. Specifically, given two SPIR-V shaders
A and B where B directly consumes the output of A, it will allow the user to eliminate output
code in A that is not consumed by B.

This functionality also can be used to trim trailing dead components from aggregate input and
output variables in the shaders.

Many drivers do these cross-stage optimizations automatically under the covers, but some
drivers may not. These optimizations can have a significant impact on a shader’s performance
and size.

SPIRV-Tools Passes

This capability comprises several SPIRV-Tools passes.

First is a pass in spirv-tools which allows the user to eliminate trailing input variable components
which are not used in the shader. This pass is called EliminateDeadInputComponents (EDIC). It
was originally designed just for vertex shaders, but was later adapted to be applied to other
shaders as well.

Next are passes in spirv-tools which allow the user to remove stores to output variables from a
shader when the variables are not used in the subsequent shader in the graphics pipeline. They
are called the EliminateDeadOutputStores (EDOS) passes.

Finally is a pass in spirv-tools which allows the user to eliminate trailing output variable
components which are not used in the shader. This pass is called
EliminateDeadOutputComponents (EDOC). It is best called after EDOS.

These passes currently work on vert, tese, tesc, geom and frag shaders only.

The EDOS passes can currently only be called from the spirv-tools API because of their more
complex interface. EDOC also can only be called from the API. A “safe” version of EDIC (only
works for vertex shaders) can be called from the spirv-opt Command Line Interface, but the
general version can only be called from the API.



Vulkan Shader Input and Output Interface Rules

Changing the variables in the interface of a shader must be done carefully. There are rules in
Vulkan concerning the validity of shader interfaces.

In Vulkan, when two shaders A & B interface, it is valid for B to be missing an input variable
which would correspond to an output variable in A. However, it is invalid for A to be missing an
output variable that corresponds to an input variable in B.

Finally, for each output variable in A, the matching input variable must have the identical type.
So if the trailing members of an input variable are removed, the same members must be
removed from its matching output variable in the preceding shader.

Aggressive Dead Code Elimination (ADCE) and Input and Output Variables

Given these Vulkan interface rules, ADCE eliminates unread Input variables by default.
However, it cannot remove unstored output variables by default.

For this reason, we also added a new option to the ADCE pass which allows removal of
unstored output variables when the user knows it is safe to do so. It is safe to do so if ADCE has
also been called on the following shader in the pipeline.

Workflow

Because of the rules in Vulkan concerning interfaces, a special sequence of operations must be
followed when changing the interfaces to retain interface validity.

The following steps can be used if a user wishes to perform cross-stage dead code and
interface elimination in SPIR-V shader A followed by shader B in the pipeline.

Both shaders should first be optimized using spirv-opt and a comprehensive size reduction
recipe including exhaustive inlining, local store/load elimination and dead code elimination. This
will remove any dead code in B, especially dead uses of input variables and the dead input
variables themselves. This also puts shader A in a canonical form for further analysis and
optimization.

If EDIC has not been performed on shader B, now is a good time to do that. This needs to be
done to ensure that the interfaces between A and B match, especially if EDOC is later applied to
A.

There are two spirv-tools passes that together perform EDOS on a shader A given its following
shader B. They will remove from A any stores to output variables not used in shader B.



The first is AnalyzeLiveInputPass(live_locs, live_builtins). It is called on the B shader. This
creates two sets, live_locs and live_builtins, a set of input locations and a set of input builtin
variables used by the B shader.

These live sets are then passed to EliminateDeadOutputStoresPass() called on the A shader.
This eliminates stores to any output locations or builtins that are not in the live sets.

EDOC can then be effectively applied to the A shader.

ADCE (Aggressive Dead Code Elimination) should now be performed again on shader A. Not
only will this remove dead code used by the removed dead output stores, but we can and
should enable removal of dead output variables from the shader by ADCE at this time.

If A is a vertex shader, EDIC should now be applied to A.

If the user wishes to perform this optimization across three shaders A, B, and C, the steps
above should be applied first to B & C, then A & B. A similar back-to-front sequence should be
used for longer shader sets.

Additional Cleanup Workflow

ADCE can be done after EDIC to remove the old types that have been trimmed and replaced
with new types.

spirv-tools API Functions

The spirv-tools passes named above can be registered and actuated using the following
mapping to true spirv-tools API functions:

EDIC CreateEliminateDeadInputComponentsPass()
EDOS CreateAnalyzeLiveInputPass(live_locs, live_builtins)

CreateEliminateDeadOutputStoresPass(live_locs, live_builtins)
EDOC CreateEliminateDeadOutputComponentsPass()
ADCE CreateAggressiveDCEPass(false, true)

glslang API Functions

This functionality has been packaged and added to the glslang API as well to make this
capability a little easier for glslang users. These glslang API functions are called
SpirvToolsEliminateDeadInputComponents(), SpirvToolsAnalyzeDeadOutputStores(), and
SpirvToolsEliminateDeadOutputStores(). Together they can be used to perform the workflow
detailed above. SpirvToolsEliminateDeadOutputStores() performs EDOC and ADCE as well as
EDOS.



Example

The following is an example of the workflow applied to the following two shaders:

// ========== t.vert ==========
#version 450

layout(location = 0) in vec4 iva[2];
layout(location = 0) out vec4 ova[2];

void main()
{
ova[0] = iva[0];
ova[1] = iva[1]; // Not used by t.frag

}

// ========== t.frag ==========
#version 450

layout(location = 0) in vec4 ifa[2];
layout(location = 0) out vec4 ofs;

void main()
{
ofs = ifa[0]; // ifa[1] AKA ova[1] in t.vert is unused

}

It can be seen that the value assigned to ova[1] in t.vert, AKA ifa[1] in t.frag, is not used, which
means the assignment to ova[1] in t.vert is dead. Ultimately, all the SPIR-V code associated with
the dead statement in t.vert can be eliminated, which means that iva[1] in t.vert becomes
unused. So iva and ova in t.vert, as well as ifa in t.frag can be reduced to arrays of length 1.

Following the workflow, EliminateDeadInputComponents (EDIC) is first applied to t.frag,
reducing ifa to length 1 and giving us:

// ========== t.frag ==========
#version 450

layout(location = 0) in vec4 ifa[1];
layout(location = 0) out vec4 ofs;



void main()
{
ofs = ifa[0]; // ifa[1] AKA ova[1] in t.vert is unused

}

Next comes EliminateDeadOutputStores (EDOS). First, AnalyzeLiveInputPass is called on
t.frag, giving live_locs = {0} and live_builtins = {}. Then EliminateDeadOutputStores (and
AggressiveDeadCodeElimination) is called on t.vert, removing the store to ova[1].

// ========== t.vert ==========
#version 450

layout(location = 0) in vec4 iva[2];
layout(location = 0) out vec4 ova[2];

void main()
{
ova[0] = iva[0];
// ova[1] = iva[1];

}

Next, EliminateDeadOutputComponents (EDOC) is applied to t.vert. Since ova[1] is no longer
stored, ova can be reduced to length 1, yielding the following:

// ========== t.vert ==========
#version 450

layout(location = 0) in vec4 iva[2];
layout(location = 0) out vec4 ova[1];

void main()
{
ova[0] = iva[0];

}

Finally, EDIC can be applied to the vertex shader, t.vert. Since iva[1] is no long read, iva can be
reduced to length 1, yielding the following:



// ========== t.vert ==========
#version 450

layout(location = 0) in vec4 iva[1];
layout(location = 0) out vec4 ova[1];

void main()
{
ova[0] = iva[0];

}

In summary, the final shaders are:

// ========== t.frag ==========
#version 450

layout(location = 0) in vec4 ifa[1];
layout(location = 0) out vec4 ofs;

void main()
{
ofs = ifa[0]; // ifa[1] AKA ova[1] in t.vert is unused

}

// ========== t.vert ==========
#version 450

layout(location = 0) in vec4 iva[1];
layout(location = 0) out vec4 ova[1];

void main()
{
ova[0] = iva[0];
// ova[1] = iva[1];

}

This example was made minimalistic to easily see the changes and understand the workflow,
but the elimination in typical shaders can be much more significant.


