
1

Presentation:

https://bit.ly/3Hngbm9

Overview

● No native Vulkan “driver” on Apple devices?
● How MoltenVK provides a layered approach to making a

Vulkan ICD
● Shipping a “Vulkan” application on Apple OS’s
● Validation Layers and the Vulkan Configurator
● How to use the two “portability extensions”
● Vulkan Loader and Validation on iOS details

Apple does things different

● In the past Apple worked with IHVs (AMD/NVIDIA/Intel) to produce the
low-level drivers (OpenGL) for GPU hardware

● The developer-facing API is (now) Metal, a proprietary Apple-only API
● Today OpenGL on Apple is implemented on Metal (much like ANGLE)
● Metal is an, explicit, and thin API… much like Vulkan in some ways
● Simple solution: Write a Vulkan ICD on top of Metal
● Tada - MoltenVK!
● You do not have to learn Metal, you do not have to learn two APIs. MoltenVK

is just Vulkan

Vulkan/MoltenVK
Layered Approach

*It’s that simple…

Native Vulkan
Drivers

Where do you get this magic library?
Included in the
Vulkan SDK available
for free at:
vulkan.lunarg.com

OR

https://github.com/
KhronosGroup/MoltenVK
If you like building things
yourself

Packaging and use of MoltenVK
● System Wide Loader/ICD (Development Only)

○ Useful for development
○ Works seamlessly with the vkconfig and the validation layers
○ The Vulkan SDK will set this up for you
○ DO NOT SHIP your applications expecting this

● Include loader/MoltenVK in your app bundle
 - Works with the loader, vkconfig, and validation layers

● Link dynamically, embed in your bundle (in /Frameworks)
 - Does not work with the loader, vkconfig, or validation layers (or iOS App Store)

● Link statically*
 - Does not work with loader, vkconfig, or validation layers
 - Does allow for non bundled executables to use Vulkan (i.e. command line programs)
 - Does work with all Apple App stores

*Must use this for shipping tvOS applications (for now)

System Wide Loader/ICD

Vulkan Configurator “Just Works*”

*macOS Desktop Only

Bugs you know about

Bugs you DON’T know about

API Usage Bugs

*macOS Desktop Only

Vulkan Configurator “*Just Works”

Vulkan Layers on macOS

● Khronos Validation
○ No DebugPrintf
○ No GPU/AV

● Khronos Synchronization2
● Shader Objects Extension
● Khronos Profiles
● API Dump
● Screenshot (new to macOS)
● GFXReconstruct

(coming soon)

Bundled Loader and Layers on macOS
VulkanRocks.app
 /Contents
 /Frameworks
 libMoltenVK.dylib
 libvulkan.1.[version number].dylib
 libvulkan.1.dylib -> libvulkan.1.[version number].dylib
 libVkLayer_api_dump.dylib
 /MacOS
 VulkanRocks
 /Resources
 /vulkan
 /icd.d
 MoltenVK_icd.json

/explicit_layer.d
VkLayer_api_dump.json

https://vulkan.lunarg.com/doc/sdk/latest/mac/getting_started.html

Bundled Loader and Layers on iOS
(development only)

VulkanRocks.app
 /Frameworks
 libMoltenVK.dylib
 libvulkan.1.[version number].dylib
 libvulkan.1.dylib -> libvulkan.1.[version number].dylib

 libVkLayer_api_dump.dylib

 VulkanRocks
 vk_layer_settings.txt

 /vulkan
 /icd.d
 MoltenVK_icd.json
 /explicit_layer.d

VkLayer_api_dump.json

Include a Dynamic Library (very common today)
● MoltenVK as a dynamic library can be placed in /Frameworks in the app

bundle
● MoltenVK has all the loader entry points, so it can “fake” the loader, but it

doesn’t actually load layers, etc.
● Works on all Apple Platforms, but not allowed on iOS app store
● Remember: this bypasses the loader - no layers!
● VK_EXT_metal_objects -> Use this for Vulkan-Metal interoperability

Static Link
● MoltenVK can also be linked to your app as a static library.
● Include the MoltenVK.xcframework
● This contains static libraries for each platform

macOS
iOS/Simulator
tvOS/Simulator

● Great option for shipping applications - especially non-bundled apps
● Works on all Apple devices.
● Cannot use any layers (validation or otherwise)
● Use Loader/Layers for development and static for shipping on iOS

● VK_EXT_metal_objects -> Use this for Vulkan-Metal interoperability

Okay, that’s the overview of linking and packaging…

What about the code?

There are two important extensions you need to know about if you are going to target Apple
devices… in fact, this goes for ANY layered Vulkan implementation on ANY platform.

VK_KHR_portability_enumeration

VK_KHR_portability_subset

VK_KHR_portability_enumeration
The purpose of this extension is to keep games/apps from “accidentally” selecting
an incomplete (but Portability Compliant) Vulkan Implementation*. While important
today on macOS, it may be more important soon on Windows and Linux.

*This does require that a layered, Portability Conformant Vulkan implementation
must identify itself to be so by supporting this extension.

VK_KHR_portability_enumeration
This is an instance extension. You are telling the Loader what devices you want to see.

1. If “VK_KHR_portability_enumeration” is listed by
vkEnumerateInstanceExtensionProperties, it means you have a (newish) loader that
supports this extension. You must add the extension name to the ppEnableExtensions
list in the VkInstanceCreateInfo structure if you want to make use of a portability
implementation.

2. You must also add the
VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR flag to the flags
member.

If you do not do BOTH of the above (on macOS currently), you will get
VK_ERROR_INCOMPATIBLE_DRIVER from vkCreateInstance

VK_KHR_portability_enumeration

Important: If multiple drivers are found, and one is “portable,”
and you’ve not enabled this extension, you will only see the fully
conformant hardware driver.

This will likely happen on Windows/Linux before it happens on
macOS!

VK_KHR_portability_enumeration

///
// Get the list of instance extensions
uint32_t extensionCount = 0;
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);

std::vector<VkExtensionProperties> extensions(extensionCount);
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, extensions.data());

Look for the extensions you want

std::vector<const char *> extNames;
bool bPortableEnumeration = false;
for (uint32_t i = 0; i < extensionCount; i++) {

 // If the extension is present, you must use it to get portable implementations

 if(!strcmp(extensions[i].extensionName, VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME))
 {
 bPortableEnumeration = true;
 extNames.push_back(VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME);
 }

 ...
 ...
 }

Create the Vulkan Loader Instance
VkInstanceCreateInfo inst_info = {};
inst_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
inst_info.pNext = NULL;
inst_info.pApplicationInfo = &appInfo;
inst_info.enabledLayerCount = 0;
inst_info.ppEnabledLayerNames = nullptr;
inst_info.enabledExtensionCount = (int)extNames.size();
inst_info.ppEnabledExtensionNames = extNames.data();

if(bPortableEnumeration)
 inst_info.flags |= VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR;

// Create the Instance
lastResult = vkCreateInstance(&inst_info, NULL, &vulkanInstance);

Create the Vulkan Loader Instance

// Create the Instance
lastResult = vkCreateInstance(&inst_info, NULL, &vulkanInstance);

Forget one of these two things? With SDK/Loader 1.3.216 or later, you will get the dreaded:

lastResult == VK_ERROR_INCOMPATIBLE_DRIVER

202
1

So, now you’ve told the loader you are interested in
a “Portability conformant” driver. You got one.

Now what?

VK_KHR_portability_subset
A layered implementation of Vulkan may have some gaps in it’s capabilities. This
extension gives you the ability to query for missing features so you can work
around them, or simply punt and tell the user you cannot run using this hardware
device.

Version 1.0 (provisional*) of this extension lists a specific set of features that may
or may not be present… we’ll get to those soon.

*VK_KHR_portability_subset_metal is coming soon

VK_KHR_portability_subset
This is a device extension.

vkEnumerateDeviceExtensionProperties will list “VK_KHR_portability_subset”

Yep, add it to the ppEnabledExtensionNames member of VkDeviceCreateInfo.

VK_KHR_portability_subset
// We have a physical device, now we need a list of it's extensions
uint32_t deviceExtensionCount;
vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &deviceExtensionCount, nullptr);

std::vector<VkExtensionProperties> deviceExtensions(deviceExtensionCount);
vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &deviceExtensionCount,
 deviceExtensions.data());
std::vector<const char *> extNamesDevice;

for (uint32_t i = 0; i < deviceExtensionCount; i++){
 if(strcmp(deviceExtensions[i].extensionName, "VK_KHR_portability_subset") == 0)
 extNamesDevice.push_back(deviceExtensions[i].extensionName)

. . .
 }

VK_KHR_portability_subset

VkPhysicalDevicePortabilitySubsetFeaturesKHR portabilityFeatures = {};

portabilityFeatures.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PORTABILITY_SUBSET_FEATURES_KHR

;

VkPhysicalDeviceFeatures2 physicalDeviceFeatures2 = {};
physicalDeviceFeatures2.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
physicalDeviceFeatures2.pNext = & portabilityFeatures;
vkGetPhysicalDeviceFeatures2(physicalDevice, &physicalDeviceFeatures2);

Query for what features are available/missing

Note vkGetPhysicalDeviceFeatures2 is an extension prior to Vulkan 1.1

The structure is basically a set of flags…
typedef struct VkPhysicalDevicePortabilitySubsetFeaturesKHR {
 VkStructureType sType;
 void* pNext;
 VkBool32 constantAlphaColorBlendFactors;
// 1
 VkBool32 events; // 1
 VkBool32 imageViewFormatReinterpretation; // 0
 VkBool32 imageViewFormatSwizzle; // 1
 VkBool32 imageView2DOn3DImage; // 1
 VkBool32 multisampleArrayImage; // 1
 VkBool32 mutableComparisonSamplers;
// 1
 VkBool32 pointPolygons; // 0
 VkBool32 samplerMipLodBias; // 0
 VkBool32 separateStencilMaskRef; // 1
 VkBool32 shaderSampleRateInterpolationFunctions; // 1
 VkBool32 tessellationIsolines; // 0
 VkBool32 tessellationPointMode; // 0
 VkBool32 triangleFans; // 0
 VkBool32 vertexAttributeAccessBeyondStride; // 1
} VkPhysicalDevicePortabilitySubsetFeaturesKHR;

Values (old) on my M1 Mac
(might be different on other
Macs/GPUs)

Zero means the feature is not
present on this device

THESE ARE “SUBJECT” TO
CHANGE!!

AS IN “LIKELY”...
(e.g. triangle fans were added
recently)

You must enable the ones you want!
VkDeviceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;

physicalDeviceFeatures2.pNext = &portabilityFeatures

createInfo.pNext = physicalDeviceFeatures2;

logicalDevice = VK_NULL_HANDLE;
VkResult result = vkCreateDevice(physicalDevice, &createInfo, nullptr, &logicalDevice);

if (result != VK_SUCCESS)
 return false;

iOS Layer Notes
Loader and Layers work as of January 2024 SDK

Only Explicit Layers - must be enabled in source code

No vkConfig for devices, you have to include the layer settings file

OR use the new VK_EXT_layer_settings extension!

Validation layer output goes to stdout, which is captured by XCode

iOS Appstore does not allow .dylibs - Frameworks coming in next SDK release

CMake support also coming soon for finding iOS versions of SDK components

Turning on an explicit layer in code
const std::vector<const char*> layerList = { "VK_LAYER_LUNARG_api_dump" };

… <your stuff>

VkInstanceCreateInfo inst_info = { VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO };

… <other stuff>

inst_info.enabledLayerCount = (uint32_t)layerList.size();
inst_info.ppEnabledLayerNames = layerList.data();

… <yet more stuff>

result = vkCreateInstance(&inst_info, NULL, &vulkanInstance);

Make sure results != VK_ERROR_LAYER_NOT_PRESENT

VK_KHR_layer_settings
const char* name = "VK_LAYER_KHRONOS_validation";
const VkBool32 setting_validate_core = VK_TRUE;

const VkLayerSettingEXT settings[] = { <- Array of settings
 {name, "validate_core", VK_LAYER_SETTING_TYPE_BOOL32_EXT,
 1, &setting_validate_core}};

const VkLayerSettingsCreateInfoEXT layer_settings_create_info = { <- Settings structure
 VK_STRUCTURE_TYPE_LAYER_SETTINGS_CREATE_INFO_EXT, nullptr,
 static_cast<uint32_t>(std::size(settings)), settings};

inst_info.pNext = &layer_settings_create_info;
result = vkCreateInstance(&inst_info, NULL, &vulkanInstance);

https://www.lunarg.com/wp-content/uploads/2024/01/Configurin
g-Vulkan-Layers-LunarG-Christophe-Riccio-01-16-2024.pdf

Conclusion

● MoltenVK is a “Layered Vulkan Implementation”
● Work around missing extensions and features like any other platform
● Portability extensions (two of them) are there to help navigate this
● Performance is very good
● Loader and layer support on iOS (Beta)
● Next SDK - Full Frameworks and compatibility with App Store
● Try it, you’ll like it!

Today’s
Presentation:

https://bit.ly/3Hngbm9

Thank you!

QUESTIONS?

Get A FREE Tumbler
at the LunarG Sponsor Table!

