
Presentation:

https://bit.ly/3U5PtWU

Why Synchronization Validation?
● Vulkan Synchronization Is Challenging

○ Massively parallel implementations, few ordering guarantees
○ Robust, complex synchronization capabilities in Vulkan API
○ Performance implications of too much synchronization
○ Need ensure correctness, not just correct appearance

● Quick Level Set
○ Technical deep-dive into using Synchronization Validation to find and debug issues
○ Assumes working knowledge of Vulkan Synchronization functionality

Synchronization Validation
● Detects Hazard From Insufficient Synchronization Operations

○ Hazard -- any access were the access pattern is not well defined
○ Byte Resolution Access/Synchronization Tracking
○ All vkCmd types (transfer, draw, renderpass, compute, resolve, etc)
○ Sync2 support

● Inter-Command Buffer Support
○ vkCmdExecuteCommands
○ Queue Submit
○ Binary Semaphores
○ Fence
○ Queue|Device Wait Idle

3

Synchronization Validation Limitations
● Limited aliasing detection (like kinds of resources)
● No timeline semaphore support
● No Host side resource tracking
● No swizzle support
● Not GPU Assisted (doesn’t know shader execution time information)
● Limited extension support
● Challenging to use

Using Synchronization Validation
● Clean Validation Run

○ Resolve all outstanding non-synchronization issues.
○ Recommend “GPU Assisted” as well.

● Running
○ Enable Synchronization Validation (next slide)
○ Disable all other validation
○ Chase down issues in debugger.

■ “Debug Action: Break” on Windows
■ Break in vkCreateDebugUtilsMessengerEXT callback

Enabling Synchronization Validation
● Vkconfig

○ Select the “Synchronization Preset”

● vk_layer_settings.txt

● Environment variables

6

khronos_validation.enables = VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT
Khronos_validation.disables =
VK_VALIDATION_FEATURE_DISABLE_OBJECT_LIFETIMES_EXT,VK_VALIDATION_FEATURE_DISABLE_API_PARA
METERS_EXT,VK_VALIDATION_FEATURE_DISABLE_CORE_CHECKS_EXT

VK_LAYER_ENABLES=VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT
VK_LAYER_DISABLES=VK_VALIDATION_FEATURE_DISABLE_CORE_CHECKS_EXT;VK_VALIDATION_FEATURE_D
ISABLE_OBJECT_LIFETIMES_EXT;VK_VALIDATION_FEATURE_DISABLE_API_PARAMETERS_EXT

“Congratulations! It’s an Error”

Validation Error: [SYNC-HAZARD-WRITE-AFTER-READ] Object 0: handle =

0xfa21a40000000003, type = VK_OBJECT_TYPE_BUFFER; | MessageID =

0x376bc9df | vkCmdCopyBuffer(): Hazard WRITE_AFTER_READ for dstBuffer

VkBuffer 0xfa21a40000000003[], region 0. Access info (usage:

SYNC_COPY_TRANSFER_WRITE, prior_usage: SYNC_COPY_TRANSFER_READ,

read_barriers: VkPipelineStageFlags2(0), command: vkCmdCopyBuffer,

seq_no: 1, reset_no: 1).

● Now what?
○ Step 1: Understanding Hazard Messages
○ Step 2: Finding the Missing Synchronization

● But first some background…

Synchronization Validation Operations
● Tracks access history

○ Operation Type as Stage/Access pairs
○ Stores “first” and “most recent” prior only

● Applies synchronization operations to access history
○ Identifies “safe” subsequent access operations
○ Track dependency chaining

● Validates accesses of each operation against prior accesses
○ The stage and access for each are compared prior access and synchronization
○ Reports hazards
○ Any hazard reported earlier may mask detection of subsequent hazard with same memory

8

Synchronization Validation Concepts
● Stage/Access pairs

○ Describe the usage of resources
○ Not all pairs are valid, valid pairs expressed as enum SYNC_<STAGE>_<ACCESS>
○ Meta stages/access for non-pipeline operations (e.g. layout transition)

● “Prior”, “Current”, and “First”
○ Hazard reports always reference two stage/access usages (prior and current/first)
○ Relative to a specific resource
○ Barrier information reflects synchronization operations between “prior” and “current/first”

● Access Operations
○ Commands that access (or record operations that will modify) resources

● Synchronization Operations
○ Commands that enforce (or record operations that will enforce) ordering between accesses

9

Record Time vs. Submit Time Validation
● Record Time

○ Validates effect of current vkCmd… relative to earlier commands in same command buffer
○ vkCmdExecuteCommands special; validates effect of “first” access of secondary command

buffers
○ Does not validate against any other command buffer

● Submit Time
○ Validates effect of “first” access of each submitted command buffer relative to all others in

“Queue Submission Order” same queue
○ Validates against all other queue’s submissions including the presence(or absence) of

semaphore, wait, and fence operations

Prior, Current, and First Accesses
● “Prior” – most recent access…

○ In command buffer record and submission order (see Queue Submission Order)
○ Most recent non-recorded access in API calling sequence

● “Current”
○ the immediate effect of a command at record time
○ “usage” – For the currently recorded vkCmd… command

● “First”
○ The earliest (in Queue Submission Order) effect of a recorded command

■ Zero or more reads
■ Zero or one write

○ “executed_usage” – The first access of executed command buffer
○ “submitted_usage” – The first access submitted command buffer

Types of synchronization errors

RAW Read-after-write This occurs when a subsequent operation uses the result of a previous
operation without waiting for the result to be completed

WAR Write-after-read This occurs when a subsequent operation overwrites a memory location
read by a previous operation before that operation is complete. (requires
only execution dependency)

WAW Write-after-write This occurs when a subsequent operation writes to the same set of memory
locations (in whole or in part) being written by a previous operation

WRW Write-racing-write This occurs when unsynchronized subpasses/queues perform writes to the
same set of memory locations

RRW Read-racing-write This occurs when unsynchronized subpasses/queues perform read and
write operations on the same set of memory locations

1
2

Synchronization Validation Operations (revisited)
● Tracks access history

○ How does the current operation (draw, transfer, etc.) affect the resource
○ Stage/access of operation for each resource
○ Include implicit operations (layout transition, load, resolve, store)
○ “First” access of an executed or submitted command buffer

● Applies synchronization operations
○ What relation do synch operations have relative to a given resource?
○ Do they apply at all? Also include earlier synch operations (chaining)
○ What subsequent operations are “safed” for that resource

● Validates accesses of each operation against prior accesses
○ What are the prior commands that touch a given resource (memory location)?
○ Comparison to earlier command stage/access and sync operations (“..is it safe?”)
○ Command from earlier queue submissions
○ Accesses from acquire or present

Step 1: Understanding Hazard Messages

● Lots of information

● Densely Packed

Record Time Hazard
Validation Error: [SYNC-HAZARD-WRITE-AFTER-READ] Object 0: handle =

0xfa21a40000000003, type = VK_OBJECT_TYPE_BUFFER; | MessageID = 0x376bc9df

| vkCmdCopyBuffer(): Hazard WRITE_AFTER_READ for dstBuffer VkBuffer

0xfa21a40000000003[], region 0. Access info (usage:

SYNC_COPY_TRANSFER_WRITE, prior_usage: SYNC_COPY_TRANSFER_READ,

read_barriers: VkPipelineStageFlags2(0), command: vkCmdCopyBuffer, seq_no:

1, reset_no: 1).

vkCmdCopyBuffer() is the current command being recorded

15

Record Time Hazard (cont’d)
Validation Error: [SYNC-HAZARD-WRITE-AFTER-READ] Object 0: handle =

0xfa21a40000000003, type = VK_OBJECT_TYPE_BUFFER; | MessageID = 0x376bc9df

| vkCmdCopyBuffer(): Hazard WRITE_AFTER_READ for dstBuffer VkBuffer

0xfa21a40000000003[], region 0. Access info (usage:

SYNC_COPY_TRANSFER_WRITE, prior_usage: SYNC_COPY_TRANSFER_READ,

read_barriers: VkPipelineStageFlags2(0), command: vkCmdCopyBuffer, seq_no:

1, reset_no: 1).

usage – vkCmdCopyBuffer is writing to the destination buffer at the transfer stage

prior_usage – the most recent previous access was a read at the transfer stage

16

Record Time Hazard (cont’d)
Validation Error: [SYNC-HAZARD-WRITE-AFTER-READ] Object 0: handle =

0xfa21a40000000003, type = VK_OBJECT_TYPE_BUFFER; | MessageID = 0x376bc9df

| vkCmdCopyBuffer(): Hazard WRITE_AFTER_READ for dstBuffer VkBuffer

0xfa21a40000000003[], region 0. Access info (usage:

SYNC_COPY_TRANSFER_WRITE, prior_usage: SYNC_COPY_TRANSFER_READ,

read_barriers: VkPipelineStageFlags2(0), command: vkCmdCopyBuffer, seq_no:

1, reset_no: 1).

command – vkCmdCopyBuffer was the command that read from the buffer

read_barriers – there are no barriers to read operations since prior_usage

seq_no and reset_no – indicate the where in the command buffer the read lives

17

Submitted Command Buffer Hazard
Validation Error: [SYNC-HAZARD-WRITE-AFTER-READ] Object 0: handle = 0x1febb508d20,

type = VK_OBJECT_TYPE_QUEUE; | MessageID = 0x376bc9df | vkQueueSubmit(): Hazard

WRITE_AFTER_READ for entry 1, VkCommandBuffer 0x1febae67c50[], Submitted access info

(submitted_usage: SYNC_COPY_TRANSFER_WRITE, command: vkCmdCopyBuffer, seq_no: 1,

reset_no: 2). Access info (prior_usage: SYNC_COPY_TRANSFER_READ, read_barriers:

VkPipelineStageFlags2(0), queue: VkQueue 0x1febb508d20[], submit: 0, batch: 0,

batch_tag: 1, command: vkCmdCopyBuffer, command_buffer: VkCommandBuffer

0x1fec5015920[], seq_no: 1, reset_no: 2).

vkQueueSubmit – Submit of command buffer 0x1febae67c50 on queue handle

submitted_usage – Is the first usage within 0x1febae67c50 of the affected resource

Submitted Command Buffer Hazard
Validation Error: [SYNC-HAZARD-WRITE-AFTER-READ] Object 0: handle = 0x1febb508d20,

type = VK_OBJECT_TYPE_QUEUE; | MessageID = 0x376bc9df | vkQueueSubmit(): Hazard

WRITE_AFTER_READ for entry 1, VkCommandBuffer 0x1febae67c50[], Submitted access info

(submitted_usage: SYNC_COPY_TRANSFER_WRITE, command: vkCmdCopyBuffer, seq_no: 1,

reset_no: 2). Access info (prior_usage: SYNC_COPY_TRANSFER_READ, read_barriers:

VkPipelineStageFlags2(0), queue: VkQueue 0x1febb508d20[], submit: 0, batch: 0,

batch_tag: 1, command: vkCmdCopyBuffer, command_buffer: VkCommandBuffer

0x1fec5015920[], seq_no: 1, reset_no: 2).

prior_usage – Information for command_buffer submitted on queue

command – Is the most recent access within command_buffer of the affected resource

Command Type Specific Error Details
● Copy

○ Source/Destination
○ Region index

● Draw or dispatch
○ Descriptor: binding, type
○ Attachment: index and type
○ Bound buffer: vertex or index

● Image Barriers
○ Transitions: oldLayout, newLayout
○ Image Subresource

● Render pass
○ Transitions: oldLayout, newLayout
○ load/store/resolve: attachment index, type, and operation

20

Call To Action 1

21

Tell us how to improve hazard messages.

Be specific. Give use cases.

Open Github Issue. Link below.

Step 2: Finding the Missing Synchronization
● Frequently Found Issues
● Debugging Using Access info information
● Method of Bisection Using Additional Barriers
● Identifying Affected Resources and Operations
● Using Code Inspection

Frequently Found Issues
● Assuming pipeline stages are logically extended with respect to memory

access barriers. Specifying the vertex shader stage in a barrier will not apply
to all subsequent shader stages read/write access.

● Invalid stage/access pairs (specifying a pipeline stage for which a given
access is not valid) that yield no barrier.

● Relying on implicit subpass dependencies with VK_SUBPASS_EXTERNAL
when memory barriers are needed.

● Missing memory dependencies with Image Layout Transitions from pipeline
barrier or renderpass Begin/Next/End operations.

● Missing stage/access scopes for load and store operations, noting that color
and depth/stencil are done by different stage/access pairs.

23

Debugging Using Access info information
● Hazards from Missing or Incomplete Barriers

○ Zero (empty) Read and Write Barriers – missing barrier or scope
○ Non-Zero Barriers – scope vs. usage mismatch

● Hazards vs. Prior Image Layout Transitions
○ Find the last layout transition (barrier or subpass dependency)
○ Usually a missing dstStageMask or dstAccessMask

● Hazards at Image Layout Transitions
○ Missing srcStageMask or srcAccessMask for the affected resource

● Hazards between buffer and/or image resource uses
○ Write-target to/from Read-target (pre/post transfer, attachment-to/from-texture)
○ Application needs to track the changing roles of a resource
○ Look for where these role changes happen, and check the synchronization operations

24

Hazards from Missing or Incomplete Barriers
● Zero (empty) Read and Write Barriers (one of)

○ Barrier of apropos type was not issued
○ Resource not included in barrier

■ Resource handle not specified in BufferMemoryBarrier/ImageMemoryBarrier
■ Resource usage not included correctly included in barrier first (or source) scope

● Non-Zero Barriers
○ Barrier affecting resource has been used
○ Current usage not include in barrier second (or destination) scope

Method of Bisection
● Insert “big hammer” Barriers/Subpass Dependency

○ Stage:
■ Outside Renderpass: VK_PIPELINE_STAGE_ALL_COMMANDS_BIT

■ Inside Renderpass: VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT
○ Access

■ VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT

● If error disappears, error source is prior to Barrier, else it is after
● Move barrier to determine source of hazard
● Alternatively “Big Hammer” Semaphore or Fence between Queue Submits

instead of barrier
● Be sure to remove after – they will impact performance

Identifying Affected Resources and Operations
● Getting Consistent Resource Identification

○ Resource handles are not guaranteed to be invariant
○ Use vkSetDebugUtilsObjectNameEXT and vkSetDebugUtilsObjectTagEXT
○ Object Names will be shown in hazard messages

● Tracking Operations For a Given Resource
○ Use the object name to identify the current handle at vkSetDebug… time
○ Break at API where handle is referenced and call matches prior_usage and command
○ Note that handle may be referenced indirectly (descriptors, vkSet…Buffer, etc)

Region Labels (WIP)
On main branch (and next SDK) VK_EXT_debug_utils support for
vkCmdBeginDebugUtilsLabelEXT and vkCmdEndDebugUtilsLabelEXT

Validation Error: [SYNC-HAZARD-WRITE-AFTER-READ] Object 0: handle =

0xfa21a40000000003, type = VK_OBJECT_TYPE_BUFFER; | MessageID = 0x376bc9df |

vkCmdCopyBuffer(): Hazard WRITE_AFTER_READ for dstBuffer VkBuffer

0xfa21a40000000003[], region 0. Access info (usage: SYNC_COPY_TRANSFER_WRITE,

prior_usage: SYNC_COPY_TRANSFER_READ, read_barriers: VkPipelineStageFlags2(0),

command: vkCmdCopyBuffer, seq_no: 1, reset_no: 1, debug_region: RegionA::RegionB).

debug_region is the region set current at prior_usage joined with `::`

Using Code Inspection
● Look near the stack trace location

○ Often missing/malformed barrier is on or near the current stack trace
○ Use the “Zero” and “Non-zero” barrier inspection rules above to evaluate

● Identifying Incomplete Existing Barriers
○ Search the code for VK_PIPELINE_STAGE_* or VK_ACCESS_* matching:

■ The current usage (check dst*Mask) or
■ Prior usage (check src*Mask fields) and
■ Do not include the correct flags for the opposite usage.

Using Code Inspection (cont’d)
● Examining Resource Use Transitions

○ Applications frequently track the logical use (or role) of a resource in metadata.
■ E.g. texture vs. rendering target

○ Inspect code which implements the role change
■ Frequently there will be call to barrier, layout, or queue family ownership calls
■ Inspect these relative to the “Missing or Incomplete Barriers” discussion above

○ Look at objects where the logical use mismatch the actual use
■ This may indicate that, while the correct transition code exists, it isn’t being called

Call To Action 2

Tell us what debugging features are missing and needed.

Be specific. Give use cases.

Open Github Issue. Link below.

Two Final Thoughts…
● Be sure and check Core/Parameter Validation as you change code to address

synchronization issues.
● Remember that “no corruption” doesn’t imply “correct”

○ Timing is implementation specific
○ “Be lucky” isn’t a strategy

Today’s
Presentation:

https://bit.ly/3U5PtWU

Thank you!

QUESTIONS?

Get A FREE Tumbler
at the LunarG Sponsor Table!

