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Who is Spencer
● Have been working on Validation Layers for about 3 years now
● Currently main task at LunarG
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What is a Vulkan Layer
● A shared library
● It is in between the Loader and Driver
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What is the Vulkan Validation Layer?
● Does the error checking for Vulkan
● Validation during development only

○ No validation overhead in released applications
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Why the Vulkan Validation Layer?
● OpenGL had many error code checks that drivers had to implement
● Checks always enabled in drivers 

○ useless CPU overhead

● Most checking was similar in all drivers (duplicated effort)
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What i̶s̶  are the Vulkan Validation Layers?
● Only one layer

○ Common mistake
● When first created, were many smaller layers
● Realized there was a lot of duplicate code
● Have settings to toggle objects of the layer now

6



What is Valid Usage
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● Valid Usage = VU 
○ “set of conditions that must be met in order to achieve well-defined run-time behavior in an 

application.”

● Rules in the spec that describe what is illegal
● The driver assumes the application provides valid data
● If a VU is broken, it is undefined behavior

○ (and everything following it)



 Undefined Behavior
● … App might work fine
● … GPU might hang
● … Computer might blow up!
● Anything is possible
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VUID
● Valid Usage ID
● Unique ID to map each error back to the spec
● Automatically generated number when spec is released
● Few UNASSIGNED VUIDs

○ Almost all gone now!
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Conditional VUs
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Conditional VUs
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Conditional VUs
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html#VUID-vkCmdClearColorImage-imageLayout-01394

https://registry.khronos.org/vulkan/specs/1.3/html/vkspec.html#VUID-vkCmdClearColorImage-imageLayout-00005
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Types of validation - API Usage

● Developer is using an API incorrectly
○ vkCreateImage(VK_IMAGE_TYPE_2D, extent.depth = 8);

● Setting depth, but using a 2D image (not 3D)
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Types of validation - Environment

● Unsuccessful interaction between application and its environment
● VkSubpassDescription::colorAttachmentCount = 5; 
● This might succeed or fail, it will depend on the system

○ maxColorAttachments
○ Minimum required is only 4
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An example error: vkcube

VkBufferImageCopy copy_region = {
    .bufferOffset = 0,
    .bufferRowLength = demo->staging_texture.tex_width,
    .bufferImageHeight = demo->staging_texture.tex_height,
    .imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1},
    .imageOffset = {0, 0, 0},
    .imageExtent = {demo->staging_texture.tex_width, demo->staging_texture.tex_height, 1},
};
vkCmdCopyBufferToImage(demo->cmd, demo->staging_texture.buffer, demo->textures[i].image,
                       VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copy_region)
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An example error: vkcube

VkBufferImageCopy copy_region = {
    .bufferOffset = 0,
    .bufferRowLength = demo->staging_texture.tex_width * 2, // ERROR!
    .bufferImageHeight = demo->staging_texture.tex_height,
    .imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1},
    .imageOffset = {0, 0, 0},
    .imageExtent = {demo->staging_texture.tex_width, demo->staging_texture.tex_height, 1},
};
vkCmdCopyBufferToImage(demo->cmd, demo->staging_texture.buffer, demo->textures[i].image,
                       VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copy_region)
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Validation Output: Error Message
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [ 
VUID-vkCmdCopyBufferToImage-pRegions-00171 ] Object 0: handle = 0x56313fd28a00, type = 
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; | 
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset 
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes. 
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed 
according to Buffer and Image Addressing, for each element of pRegions 
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
    Objects: 2
        [0] 0x56313fd28a00, type: 6, name: NULL
        [1] 0xd175b40000000013, type: 9, name: NULL

31



Error Message - Basic Info
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [ 
VUID-vkCmdCopyBufferToImage-pRegions-00171 ] Object 0: handle = 0x56313fd28a00, type = 
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; | 
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset 
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes. 
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed 
according to Buffer and Image Addressing, for each element of pRegions 
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-VkCmdCopyBufferToI
mage-pRegions-00171)
    Objects: 2
        [0] 0x56313fd28a00, type: 6, name: NULL
        [1] 0xd175b40000000013, type: 9, name: NULL
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Error Message - Basic Info
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [ 
VUID-vkCmdCopyBufferToImage-pRegions-00171 ] Object 0: handle = 0x56313fd28a00, type = 
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; | 
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset 
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes. 
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed 
according to Buffer and Image Addressing, for each element of pRegions 
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-VkCmdCopyBufferToI
mage-pRegions-00171)
    Objects: 2
        [0] 0x56313fd28a00, type: 6, name: NULL
        [1] 0xd175b40000000013, type: 9, name: NULL
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Error Message - Basic Info
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [ 
VUID-vkCmdCopyBufferToImage-pRegions-00171 ] Object 0: handle = 0x56313fd28a00, type = 
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; | 
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset 
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes. 
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed 
according to Buffer and Image Addressing, for each element of pRegions 
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-VkCmdCopyBufferToI
mage-pRegions-00171)
    Objects: 2
        [0] 0x56313fd28a00, type: 6, name: NULL
        [1] 0xd175b40000000013, type: 9, name: NULL

34



Error Message - Basic Info
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [ 
VUID-vkCmdCopyBufferToImage-pRegions-00171 ] Object 0: handle = 0x56313fd28a00, type = 
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; | 
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset 
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes. 
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed 
according to Buffer and Image Addressing, for each element of pRegions 
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-VkCmdCopyBufferToI
mage-pRegions-00171)
    Objects: 2
        [0] 0x56313fd28a00, type: 6, name: NULL
        [1] 0xd175b40000000013, type: 9, name: NULL

● msgNum / MessageID is a hash of the VUID string, used for handling 
duplicate messages
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Error Message - Main message
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [ 
VUID-vkCmdCopyBufferToImage-pRegions-00171 ] Object 0: handle = 0x56313fd28a00, type = 
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; | 
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset 
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes. 
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed 
according to Buffer and Image Addressing, for each element of pRegions 
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
    Objects: 2
        [0] 0x56313fd28a00, type: 6, name: NULL
        [1] 0xd175b40000000013, type: 9, name: NULL
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Error Message - Main message
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [ 
VUID-vkCmdCopyBufferToImage-pRegions-00171 ] Object 0: handle = 0x56313fd28a00, type = 
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; | 
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset 
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes. 
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed 
according to Buffer and Image Addressing, for each element of pRegions 
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
    Objects: 2
        [0] 0x56313fd28a00, type: 6, name: NULL
        [1] 0xd175b40000000013, type: 9, name: NULL

37



Error Message - Main message
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [ 
VUID-vkCmdCopyBufferToImage-pRegions-00171 ] Object 0: handle = 0x56313fd28a00, type = 
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; | 
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset 
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes. 
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed 
according to Buffer and Image Addressing, for each element of pRegions 
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
    Objects: 2
        [0] 0x56313fd28a00, type: 6, name: NULL
        [1] 0xd175b40000000013, type: 9, name: NULL

38



Error Message - Main message
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [ 
VUID-vkCmdCopyBufferToImage-pRegions-00171 ] Object 0: handle = 0x56313fd28a00, type = 
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; | 
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset 
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes. 
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed 
according to Buffer and Image Addressing, for each element of pRegions 
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
    Objects: 2
        [0] 0x56313fd28a00, type: 6, name: NULL
        [1] 0xd175b40000000013, type: 9, name: NULL
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Advise - Fixing errors
● Fix the first error message first

○ Similar to with C/C++ compiler errors, the first error may cause subsequent errors
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Error Message - Spec Reference
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [ 
VUID-vkCmdCopyBufferToImage-pRegions-00171 ] Object 0: handle = 0x56313fd28a00, type = 
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; | 
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy  523264 bytes plus 0 offset 
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes. 
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed 
according to Buffer and Image Addressing, for each element of pRegions 
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
    Objects: 2
        [0] 0x56313fd28a00, type: 6, name: NULL
        [1] 0xd175b40000000013, type: 9, name: NULL
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https://www.khronos.org/registry/vulkan/specs/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToImage-pRegions-00171
https://www.khronos.org/registry/vulkan/specs/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToImage-pRegions-00171


Error Message - Spec Reference
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [ 
VUID-vkCmdCopyBufferToImage-pRegions-00171 ] Object 0: handle = 0x56313fd28a00, type = 
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; | 
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy  523264 bytes plus 0 offset 
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes. 
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed 
according to Buffer and Image Addressing, for each element of pRegions 
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
    Objects: 2
        [0] 0x56313fd28a00, type: 6, name: NULL
        [1] 0xd175b40000000013, type: 9, name: NULL
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Error Message - Object Handles
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [ 
VUID-vkCmdCopyBufferToImage-pRegions-00171 ] Object 0: handle = 0x56313fd28a00, type = 
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; | 
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset 
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes. 
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed 
according to Buffer and Image Addressing, for each element of pRegions 
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
    Objects: 2
        [0] 0x56313fd28a00, type: 6, name: NULL
        [1] 0xd175b40000000013, type: 9, name: NULL
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Error Message - Object Handles
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [ 
VUID-vkCmdCopyBufferToImage-pRegions-00171 ] Object 0: handle = 0x56313fd28a00, type = 
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; | 
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset 
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes. 
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed 
according to Buffer and Image Addressing, for each element of pRegions 
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
    Objects: 2
        [0] 0x56313fd28a00, type: 6, name: NULL
        [1] 0xd175b40000000013, type: 9, name: NULL

● List the Objects that were part of the error
○ Helps to know which VkCommandBuffer and VkBuffer this error is about
○ Can use VK_EXT_debug_utils to give these objects name
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Debug Utilities Extension
● VK_EXT_debug_utils

○ Replaced original VK_EXT_debug_report/VK_EXT_debug_marker
● Implemented by Vulkan-ValidationLayers
● Provides the ability to attach user-defined names to

○ Vulkan Objects
○ Sequences of commands recorded in Command Buffers
○ Queue submissions

● Names show up in validation error messages and are also used by other tools such as RenderDoc
● Allows applications to register their own validation error handling callback

45
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● Allows a name to be attached to any Vulkan object
● Can help you identify what part of your code is causing an error.
● Contents of pObjectName is copied to internal storage.



Debug Utilities Extension: Object naming
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Objects - 2
Object[0] - VK_OBJECT_TYPE_COMMAND_BUFFER, Handle 0x5566702c9f60, Name "PrepareCB"
Object[1] - VK_OBJECT_TYPE_BUFFER, Handle 0x9fde6b0000000014, Name "TexBuffer"
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Debug Utilities extension: Command buffer labels

Command Buffer Labels - 3
Label[0] - StagingBufferCopy(0) { 0.000000, 0.000000, 0.000000, 0.000000}
Label[1] - StagingTexture(0) { 0.000000, 0.000000, 0.000000, 0.000000}
Label[2] - Prepare { 0.000000, 0.000000, 0.000000, 0.000000}

50

● Allows a name to be attached to a sequence of commands in a command buffer

● Stack-like, multiple labels can be present at once

○ vkCmdBeginDebugUtilsLabelEXT() pushes

○ vkCmdEndDebugUtilsLabelEXT() pops

● The color field is used by tools like RenderDoc

● See also vkQueueBeginDebugUtilsLabelEXT()

● Not printed by default error handler!

https://github.com/baldurk/renderdoc/blob/v1.x/docs/how/how_annotate_capture.rst


Debug Utilities extension: vkcube error callback
ERROR : VALIDATION - Message Id Number: 1867332608 | Message Id Name: 
VUID-vkCmdCopyBufferToImage-pRegions-00171

Validation Error: [ VUID-vkCmdCopyBufferToImage-pRegions-00171 ] Object 0: handle = 0x562780095ca0, 
name = PrepareCB, type = VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0x9fde6b0000000014, name = 
TexBuffer type = VK_OBJECT_TYPE_BUFFER; | MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is 
trying to copy  523264 bytes plus 0 offset to/from the VkBuffer (VkBuffer 0x9fde6b0000000014[TexBuffer]) 
which exceeds the VkBuffer total size of 262144 bytes. The Vulkan spec states: srcBuffer must be large enough 
to contain all buffer locations that are accessed according to Buffer and Image Addressing, for each element 
of pRegions 
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)

Objects - 2
Object[0] - VK_OBJECT_TYPE_COMMAND_BUFFER, Handle 0x562780095ca0, Name "PrepareCB"
Object[1] - VK_OBJECT_TYPE_BUFFER, Handle 0x9fde6b0000000014, Name "TexBuffer"

Command Buffer Labels - 3
Label[0] - StagingBufferCopy(0) { 0.000000, 0.000000, 0.000000, 0.000000}
Label[1] - StagingTexture(0) { 0.000000, 0.000000, 0.000000, 0.000000}
Label[2] - Prepare { 0.000000, 0.000000, 0.000000, 0.000000}
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Debug Utilities extension: Custom message callback
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       ● Set up by calling vkCreateDebugUtilsMessengerEXT()

○ Your callback receives a complex struct for each error

○ Same mechanism used for default error logging

● Make your own message format

● Add messages to application logging stream 

● Send messages to somewhere other than the console

● Trigger failures in your unit test framework

● Filter out unwanted messages (NOT recommended, built-in filtering is faster)



Validation Quick Start - Get the binary
● Install the Vulkan SDK or OS-provided packages

○ Well tested version

● Build from source
○ Great for tracking down a bug
○ Get latest changes
○ Hopefully not hard to build
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Validation Quick Start - Enable
● Validation Layers are used like any other Vulkan Layer

● Run vkconfig (Simplest)
● At vkCreateInstance() time

○ Add the layer name to VkInstanceCreateInfo::ppEnabledLayerNames

● From the terminal (Power user)
○ export VK_INSTANCE_LAYERS=VK_LAYER_KHRONOS_validation ./your-application
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Vulkan Configurator

55



Configuration
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● Validation is split up into several areas to reduce 
performance overhead

● Don’t enable all areas at once (it will be slow!)
● Fix errors in each area, 

○ then run Core / Standard Preset again



Configuration - How to set
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● Use vkconfig presets
○ Commonly used and tested configurations

● Can use vk_layer_settings.txt
○ Khronos_validation.enables
○ khronos_validation.disables

● Environment variables
○ VK_LAYER_ENABLES
○ VK_LAYER_DISABLES

● VK_EXT_validation_features
○ Set at VkDevice creation time

● https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html

https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html


Configuration: Stateless
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● Checks simple VUIDs 
● Lots of generated checks
● doesn’t require expensive state tracking



Configuration: Core
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● Most VUIDs checked here



Configuration: Thread Safety
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● Checks external synchronization requirements



Configuration: Handle Wrapping
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● Prevents handle reuse bugs



Configuration: Object Lifetime
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● Detects use of destroyed objects



Configuration: Shader Based
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● GPU-Assisted
○ AKA: GPU-AV
○ Instruments SPIR-V to detect problems in shaders
○ Descriptor indexing
○ Buffer Device Address
○ Not supported on Mac

● DebugPrintf
○ Adds printf() functionality to shaders
○ Not supported on Mac



Configuration: Synchronization
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● Checks for correct Execution and Memory Dependencies
● vkCmdPipelineBarrier(), VkEvents, etc.



Configuration: Best Practice
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● Performance warnings
● Mixture of common and vendor-specific checks



Undefined Value
● Undefined Value != Undefined Behavior
● The app will never crash
● Your data might be garbage
● Great use of Best Practices layers
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Undefined Behavior vs Best Practice
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Normal Error Valid
But is this what you wanted?



Configuration: Break on error
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● Will stop program when an error is detected
○ Calls DebugBreak(); or raise(SIGTRAP);



Configuration: Limit message severity
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● Almost all messages are ‘Error’
● Except Best Practices, which is ‘Performance’ 

and ‘Warning’



Configuration: Limit repeated messages
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● Limit times a message is repeated
○ Exact VUID string must match to count as a 

repeat



Configuration: Mute message
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● Sometimes undefined behaviour works
● Sometimes the Validation Layers have bugs
● Sometimes the Vulkan Spec have bugs



Spec bug vs Validation bug
● If not sure which to choose, feel free to put in Validation repo

○ We can always move it
○ Also check Khronos Slack, Discord, etc - the problem might be something simple on your end
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Advise - Read the spec
● “Read the spec early and often”
● Has all the answers
● Knowing how to look at the subset you care about is a skill
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Advise - Fixing errors
● Run in a debugger and use the Break Debug Action

○ Almost all error checking occurs immediately in each Vulkan API call
○ Stack trace will take you to the part of your code causing the error

● Search in the source for the VUID string to see how it is validated
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Limitations
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● Extensions and VUIDs are constantly added
○ Currently there are 18000 VUIDs!
○ 3000 at 1.0 launch

● Sometimes validating an extension is more difficult 
than writing or implementing it.

● Triage
○ Try to ensure new KHR or EXT extensions are fully 

validated
○ Respond to ‘Incomplete’ Issues to implement VUIDs that 

are needed by the community
○ Please submit an Issue on github if we’re missing 

something you need!

https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues


Limitations: Not all VUIDs checked
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Limitations: Some VUIDs hard to check
● VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT (aka ‘bindless’)

○ Only descriptors ‘dynamically used’ by a shader must be valid

○ Bindless descriptor sets may contain 1 million+ descriptors

○ But each shader invocation will only use a few of them

○ Descriptor index is calculated in the shader

■  CPU side code doesn’t know which descriptors to validate.

● Validating all descriptors results in large CPU overhead

● Many false positives due to validating unused descriptors

● Need to use GPU-AV to improve validation
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https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkDescriptorBindingFlagBits.html


Recent Improvements (last 12 months)
● Validation for new extensions

○ Video extensions, VK_EXT_mesh_shader, VK_KHR_descriptor_buffer, 
VK_KHR_dynamic_rendering, VK_EXT_pipeline_library, and more

○ Big THANK YOU to those who wrote validation for these extensions

● Synchronization validation Phase II
○ Multi-CommandBuffer and multi-Queue checking

● Increased SPIR-V runtime validation
● Improved performance for multithreaded applications
● GPU-AV performance improvements
● Adding UNASSIGNED validation errors to the spec (ongoing)
● Upgrade from C++11 to C++17
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Upcoming Improvements
● Better error messages
● Better descriptor indexing checking using GPU-AV

○ Improve performance
○ Close gaps in error checking

● Better handling of timeline semaphores and ‘execution-time’ VUIDs
● Shader validation improvements
● Again, please submit an Issue on github if we’re missing something you need!

○ We also accept Pull Requests :)
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https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues


Questions?

80


