
Using Vulkan Validation Effectively

1

Spencer Fricke
LunarG, Inc.

Presented at the May Khronos DevDay in Osaka Japan

Who is Spencer
● Have been working on Validation Layers for about 3 years now
● Currently main task at LunarG

2

What is a Vulkan Layer
● A shared library
● It is in between the Loader and Driver

3

Vulkan
Application

Vulkan
Loader

GPU
(Vulkan Driver)

Vulkan
Layers

What is the Vulkan Validation Layer?
● Does the error checking for Vulkan
● Validation during development only

○ No validation overhead in released applications

4

Why the Vulkan Validation Layer?
● OpenGL had many error code checks that drivers had to implement
● Checks always enabled in drivers

○ useless CPU overhead

● Most checking was similar in all drivers (duplicated effort)

5

What i̶s̶ are the Vulkan Validation Layers?
● Only one layer

○ Common mistake
● When first created, were many smaller layers
● Realized there was a lot of duplicate code
● Have settings to toggle objects of the layer now

6

What is Valid Usage

7

● Valid Usage = VU
○ “set of conditions that must be met in order to achieve well-defined run-time behavior in an

application.”

● Rules in the spec that describe what is illegal
● The driver assumes the application provides valid data
● If a VU is broken, it is undefined behavior

○ (and everything following it)

 Undefined Behavior
● … App might work fine
● … GPU might hang
● … Computer might blow up!
● Anything is possible

8

VUID
● Valid Usage ID
● Unique ID to map each error back to the spec
● Automatically generated number when spec is released
● Few UNASSIGNED VUIDs

○ Almost all gone now!

9

10

11

12

13

14

15

Conditional VUs

16

Conditional VUs

17

Conditional VUs
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html#VUID-vkCmdClearColorImage-imageLayout-01394

https://registry.khronos.org/vulkan/specs/1.3/html/vkspec.html#VUID-vkCmdClearColorImage-imageLayout-00005

18

Life cycle of a VU

New Extension

Spec bug
Missing VU

Life cycle of a VU

New Extension

Spec bug
Missing VU

Spec PR
Add VU

Life cycle of a VU

New Extension

Spec bug
Missing VU

Spec PR
Add VU

VU added to
Spec

Life cycle of a VU

New Extension

Spec bug
Missing VU

Spec PR
Add VU

VU added to
Spec

Implemented in
Validation Layers

Life cycle of a VU

New Extension

Spec bug
Missing VU

Spec PR
Add VU

VU added to
Spec

Implemented in
Validation Layers

New Extension
(interaction)

Spec bug
VU is wrong

Life cycle of a VU

24

New Extension

Spec bug
Missing VU

Spec PR
Add VU

VU added to
Spec

Implemented in
Validation Layers

New Extension
(interaction)

Spec bug
VU is wrong

Spec PR
Change VU

Life cycle of a VU

25

New Extension

Spec bug
Missing VU

Spec PR
Add VU

VU added to
Spec

Implemented in
Validation Layers

New Extension
(interaction)

Spec bug
VU is wrong

Spec PR
Change VU

VU fix pushed
to Spec

Life cycle of a VU

26

New Extension

Spec bug
Missing VU

Spec PR
Add VU

VU added to
Spec

Implemented in
Validation Layers

New Extension
(interaction)

Spec bug
VU is wrong

Spec PR
Change VU

VU fix pushed
to Spec

Fixed in Validation
Layers

Types of validation - API Usage

● Developer is using an API incorrectly
○ vkCreateImage(VK_IMAGE_TYPE_2D, extent.depth = 8);

● Setting depth, but using a 2D image (not 3D)

27

Types of validation - Environment

● Unsuccessful interaction between application and its environment
● VkSubpassDescription::colorAttachmentCount = 5;
● This might succeed or fail, it will depend on the system

○ maxColorAttachments
○ Minimum required is only 4

28

An example error: vkcube

VkBufferImageCopy copy_region = {
 .bufferOffset = 0,
 .bufferRowLength = demo->staging_texture.tex_width,
 .bufferImageHeight = demo->staging_texture.tex_height,
 .imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1},
 .imageOffset = {0, 0, 0},
 .imageExtent = {demo->staging_texture.tex_width, demo->staging_texture.tex_height, 1},
};
vkCmdCopyBufferToImage(demo->cmd, demo->staging_texture.buffer, demo->textures[i].image,
 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©_region)

29

An example error: vkcube

VkBufferImageCopy copy_region = {
 .bufferOffset = 0,
 .bufferRowLength = demo->staging_texture.tex_width * 2, // ERROR!
 .bufferImageHeight = demo->staging_texture.tex_height,
 .imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1},
 .imageOffset = {0, 0, 0},
 .imageExtent = {demo->staging_texture.tex_width, demo->staging_texture.tex_height, 1},
};
vkCmdCopyBufferToImage(demo->cmd, demo->staging_texture.buffer, demo->textures[i].image,
 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©_region)

30

Validation Output: Error Message
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

31

Error Message - Basic Info
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-VkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

32

Error Message - Basic Info
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-VkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

33

Error Message - Basic Info
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-VkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

34

Error Message - Basic Info
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-VkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

● msgNum / MessageID is a hash of the VUID string, used for handling
duplicate messages

35

Error Message - Main message
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

36

Error Message - Main message
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

37

Error Message - Main message
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

38

Error Message - Main message
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

39

Advise - Fixing errors
● Fix the first error message first

○ Similar to with C/C++ compiler errors, the first error may cause subsequent errors

40

Error Message - Spec Reference
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

41

https://www.khronos.org/registry/vulkan/specs/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToImage-pRegions-00171
https://www.khronos.org/registry/vulkan/specs/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToImage-pRegions-00171

Error Message - Spec Reference
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

42

https://www.khronos.org/registry/vulkan/specs/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToImage-pRegions-00171
https://www.khronos.org/registry/vulkan/specs/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToImage-pRegions-00171

Error Message - Object Handles
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

43

Error Message - Object Handles
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

● List the Objects that were part of the error
○ Helps to know which VkCommandBuffer and VkBuffer this error is about
○ Can use VK_EXT_debug_utils to give these objects name

44

Debug Utilities Extension
● VK_EXT_debug_utils

○ Replaced original VK_EXT_debug_report/VK_EXT_debug_marker
● Implemented by Vulkan-ValidationLayers
● Provides the ability to attach user-defined names to

○ Vulkan Objects
○ Sequences of commands recorded in Command Buffers
○ Queue submissions

● Names show up in validation error messages and are also used by other tools such as RenderDoc
● Allows applications to register their own validation error handling callback

45

https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_EXT_debug_utils.html

46

47

● Allows a name to be attached to any Vulkan object
● Can help you identify what part of your code is causing an error.
● Contents of pObjectName is copied to internal storage.

Debug Utilities Extension: Object naming

48

Objects - 2
Object[0] - VK_OBJECT_TYPE_COMMAND_BUFFER, Handle 0x5566702c9f60, Name "PrepareCB"
Object[1] - VK_OBJECT_TYPE_BUFFER, Handle 0x9fde6b0000000014, Name "TexBuffer"

49

Debug Utilities extension: Command buffer labels

Command Buffer Labels - 3
Label[0] - StagingBufferCopy(0) { 0.000000, 0.000000, 0.000000, 0.000000}
Label[1] - StagingTexture(0) { 0.000000, 0.000000, 0.000000, 0.000000}
Label[2] - Prepare { 0.000000, 0.000000, 0.000000, 0.000000}

50

● Allows a name to be attached to a sequence of commands in a command buffer

● Stack-like, multiple labels can be present at once

○ vkCmdBeginDebugUtilsLabelEXT() pushes

○ vkCmdEndDebugUtilsLabelEXT() pops

● The color field is used by tools like RenderDoc

● See also vkQueueBeginDebugUtilsLabelEXT()

● Not printed by default error handler!

https://github.com/baldurk/renderdoc/blob/v1.x/docs/how/how_annotate_capture.rst

Debug Utilities extension: vkcube error callback
ERROR : VALIDATION - Message Id Number: 1867332608 | Message Id Name:
VUID-vkCmdCopyBufferToImage-pRegions-00171

Validation Error: [VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x562780095ca0,
name = PrepareCB, type = VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0x9fde6b0000000014, name =
TexBuffer type = VK_OBJECT_TYPE_BUFFER; | MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is
trying to copy 523264 bytes plus 0 offset to/from the VkBuffer (VkBuffer 0x9fde6b0000000014[TexBuffer])
which exceeds the VkBuffer total size of 262144 bytes. The Vulkan spec states: srcBuffer must be large enough
to contain all buffer locations that are accessed according to Buffer and Image Addressing, for each element
of pRegions
(https://vulkan.lunarg.com/doc/view/1.3.243.0/windows/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToI
mage-pRegions-00171)

Objects - 2
Object[0] - VK_OBJECT_TYPE_COMMAND_BUFFER, Handle 0x562780095ca0, Name "PrepareCB"
Object[1] - VK_OBJECT_TYPE_BUFFER, Handle 0x9fde6b0000000014, Name "TexBuffer"

Command Buffer Labels - 3
Label[0] - StagingBufferCopy(0) { 0.000000, 0.000000, 0.000000, 0.000000}
Label[1] - StagingTexture(0) { 0.000000, 0.000000, 0.000000, 0.000000}
Label[2] - Prepare { 0.000000, 0.000000, 0.000000, 0.000000}

51

Debug Utilities extension: Custom message callback

52

 ● Set up by calling vkCreateDebugUtilsMessengerEXT()

○ Your callback receives a complex struct for each error

○ Same mechanism used for default error logging

● Make your own message format

● Add messages to application logging stream

● Send messages to somewhere other than the console

● Trigger failures in your unit test framework

● Filter out unwanted messages (NOT recommended, built-in filtering is faster)

Validation Quick Start - Get the binary
● Install the Vulkan SDK or OS-provided packages

○ Well tested version

● Build from source
○ Great for tracking down a bug
○ Get latest changes
○ Hopefully not hard to build

53

Validation Quick Start - Enable
● Validation Layers are used like any other Vulkan Layer

● Run vkconfig (Simplest)
● At vkCreateInstance() time

○ Add the layer name to VkInstanceCreateInfo::ppEnabledLayerNames

● From the terminal (Power user)
○ export VK_INSTANCE_LAYERS=VK_LAYER_KHRONOS_validation ./your-application

54

Vulkan Configurator

55

Configuration

56

● Validation is split up into several areas to reduce
performance overhead

● Don’t enable all areas at once (it will be slow!)
● Fix errors in each area,

○ then run Core / Standard Preset again

Configuration - How to set

57

● Use vkconfig presets
○ Commonly used and tested configurations

● Can use vk_layer_settings.txt
○ Khronos_validation.enables
○ khronos_validation.disables

● Environment variables
○ VK_LAYER_ENABLES
○ VK_LAYER_DISABLES

● VK_EXT_validation_features
○ Set at VkDevice creation time

● https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html

https://vulkan.lunarg.com/doc/sdk/latest/windows/khronos_validation_layer.html

Configuration: Stateless

58

● Checks simple VUIDs
● Lots of generated checks
● doesn’t require expensive state tracking

Configuration: Core

59

● Most VUIDs checked here

Configuration: Thread Safety

60

● Checks external synchronization requirements

Configuration: Handle Wrapping

61

● Prevents handle reuse bugs

Configuration: Object Lifetime

62

● Detects use of destroyed objects

Configuration: Shader Based

63

● GPU-Assisted
○ AKA: GPU-AV
○ Instruments SPIR-V to detect problems in shaders
○ Descriptor indexing
○ Buffer Device Address
○ Not supported on Mac

● DebugPrintf
○ Adds printf() functionality to shaders
○ Not supported on Mac

Configuration: Synchronization

64

● Checks for correct Execution and Memory Dependencies
● vkCmdPipelineBarrier(), VkEvents, etc.

Configuration: Best Practice

65

● Performance warnings
● Mixture of common and vendor-specific checks

Undefined Value
● Undefined Value != Undefined Behavior
● The app will never crash
● Your data might be garbage
● Great use of Best Practices layers

66

Undefined Behavior vs Best Practice

67

Normal Error Valid
But is this what you wanted?

Configuration: Break on error

68

● Will stop program when an error is detected
○ Calls DebugBreak(); or raise(SIGTRAP);

Configuration: Limit message severity

69

● Almost all messages are ‘Error’
● Except Best Practices, which is ‘Performance’

and ‘Warning’

Configuration: Limit repeated messages

70

● Limit times a message is repeated
○ Exact VUID string must match to count as a

repeat

Configuration: Mute message

71

● Sometimes undefined behaviour works
● Sometimes the Validation Layers have bugs
● Sometimes the Vulkan Spec have bugs

Spec bug vs Validation bug
● If not sure which to choose, feel free to put in Validation repo

○ We can always move it
○ Also check Khronos Slack, Discord, etc - the problem might be something simple on your end

72

Advise - Read the spec
● “Read the spec early and often”
● Has all the answers
● Knowing how to look at the subset you care about is a skill

73

Advise - Fixing errors
● Run in a debugger and use the Break Debug Action

○ Almost all error checking occurs immediately in each Vulkan API call
○ Stack trace will take you to the part of your code causing the error

● Search in the source for the VUID string to see how it is validated

74

Limitations

75

● Extensions and VUIDs are constantly added
○ Currently there are 18000 VUIDs!
○ 3000 at 1.0 launch

● Sometimes validating an extension is more difficult
than writing or implementing it.

● Triage
○ Try to ensure new KHR or EXT extensions are fully

validated
○ Respond to ‘Incomplete’ Issues to implement VUIDs that

are needed by the community
○ Please submit an Issue on github if we’re missing

something you need!

https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues

Limitations: Not all VUIDs checked

76

Limitations: Some VUIDs hard to check
● VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT (aka ‘bindless’)

○ Only descriptors ‘dynamically used’ by a shader must be valid

○ Bindless descriptor sets may contain 1 million+ descriptors

○ But each shader invocation will only use a few of them

○ Descriptor index is calculated in the shader

■ CPU side code doesn’t know which descriptors to validate.

● Validating all descriptors results in large CPU overhead

● Many false positives due to validating unused descriptors

● Need to use GPU-AV to improve validation

77

https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkDescriptorBindingFlagBits.html

Recent Improvements (last 12 months)
● Validation for new extensions

○ Video extensions, VK_EXT_mesh_shader, VK_KHR_descriptor_buffer,
VK_KHR_dynamic_rendering, VK_EXT_pipeline_library, and more

○ Big THANK YOU to those who wrote validation for these extensions

● Synchronization validation Phase II
○ Multi-CommandBuffer and multi-Queue checking

● Increased SPIR-V runtime validation
● Improved performance for multithreaded applications
● GPU-AV performance improvements
● Adding UNASSIGNED validation errors to the spec (ongoing)
● Upgrade from C++11 to C++17

78

Upcoming Improvements
● Better error messages
● Better descriptor indexing checking using GPU-AV

○ Improve performance
○ Close gaps in error checking

● Better handling of timeline semaphores and ‘execution-time’ VUIDs
● Shader validation improvements
● Again, please submit an Issue on github if we’re missing something you need!

○ We also accept Pull Requests :)

79

https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues

Questions?

80

