
Fine Grained Locking in the Validation 
Layers

Jeremy Gebben, LunarG, Inc
March 2022



Understanding Fine Grained Locking
Speaker: Jeremy Gebben

Senior Graphics Software Engineer with 25 years of experience working on drivers 
for GPUs, high speed networking devices, and custom embedded hardware.



Introduction
● Fine grained locking is an optimization to improve validation of multi-threaded 

applications
● We will cover:

○ The effect of the optimization
○ How to enable it
○ What the optimization does
○ Current status and next steps

3



Lock contention w/ no validation
● 3ms/frame
● 16 threads using Vulkan
● This is the worst case game 

for validation performance



Lock contention with validation enabled

● 393ms/frame
● New R/W Lock waits from 

validation



Lock contention with fine grained locking
● 191ms/frame
● Validation R/W waits have 

much smaller affect
● 150% improvement in 

framerate for many 
shipping games



How to enable
Vulkan Configurator:

Environment variable:  export VK_LAYER_FINE_GRAINED_LOCKING=1

Vk_settings.txt:   khronos_validation.fine_grained_locking = true

Currently only affects Core Validation



What happens in a Vulkan call
    // Validate phase
    // layer_data is the per-VkInstance or VkDevice data saved by the layer
    // object_dispatch is a vector of the active ValidationObjects 
    for (auto intercept : layer_data->object_dispatch) {
        auto lock = intercept->ReadLock();
        skip |= intercept->PreCallValidateFoo(...)
        if (skip) return VK_ERROR_VALIDATION_FAILED_EXT;
    }
    // PreCallRecord phase
    for (auto intercept : layer_data->object_dispatch) {
        auto lock = intercept->WriteLock();
        intercept->PreCallRecordFoo(...);
    }
    // call down to next layer / ICD
    VkResult result = DispatchFoo(...);
    // PostCallRecord phase
    for (auto intercept : layer_data->object_dispatch) {
        auto lock = intercept->WriteLock();
        intercept->PostCallRecordFoo(...);
    }

● LOTS of code in each Validate or Record method!
● ReadLock() and WriteLock() return a 

std::unique_lock on a std::shared_mutex
● Fine grained locking causes the unique_lock to 

use the std::defer_lock policy
● This disables the locking in this part of the code
● Other locks added to guard specific data



Validation Areas / Objects
● Every checkbox (except Handle Wrapping) 

enables a Validation Object in the layer
○ Enabling multiple is supported but is likely slow

● Thread Safety, Object Lifetime and Stateless
○ Have always used std::defer_lock

● Core
○ Enabled in SDK 1.3.204

● Best Practices, GPU-Assisted, Debug Printf, 
Synchronization

○ Will be enabled in a future SDK release



Why are there still locks at all?
● Validation cannot assume the application is correct

○ All handles validated by lookup in Device or Instance level maps (must be thread safe)

● State objects 
○ Stored in thread safe maps 
○ Store information for each Vulkan object, needed for validation checks
○ Reference counted with shared_ptr so that they can be used without holding the map lock

● Sometimes, the layer must update state objects when external 
synchronization is not required by Vulkan

● Example: VkImage layouts
○ Hardly any external synchronization requirements for VkImage
○ We track current layout for every subresource, which can be changed by many commands



Locking goals
● Thread Safety validation should be use used to make sure applications meet 

Vulkan external synchronization requirements
● Programs that run without errors from Thread Safety validation

○ MUST not crash
○ MUST produce the same set of errors when validation with or without fine grained 

locking enabled.
○ The order in which errors are output MAY change from run to run due to unpredictability 

of CPU scheduling of multiple threads.
● Programs that have errors from Thread Safety validation

○ SHOULD not cause crashes in the validation layer
○ MAY produce incorrect output



State object locking policies
● Immutable member data, set in constructor and never changed

○ Data members that are public and const require no locking

● Fully encapsulated and locked member data
○ Data members are private and accessors fully control locking

● Encapsulated with limited interactions with other state objects
○ As above but interactions between state objects requires care due to lock interactions
○ Example: VkQueue, VkSemaphore, and VkFence

● Public non-const data and user controlled locking (VkCommandBuffer)
○ Massive amounts of state, sometimes changes outside of external sync requirements
○ Not feasible to provide thread safe accessors without large performance impact 
○ Caller is responsible for locking
○ Very fragile and hopefully will be improved



Next steps
● Implement Fine Grained locking in Best Practices, GPUAV, DebugPrintf, 

SyncVal
● Improve Command Buffer state object locking
● Add more tests and benchmarks to CI
● Gather feedback (via github issues). Please give this a try and let us know 

how it goes!
● Switch to default-on in a future SDK release

○ Will leave the ability to turn off for debugging

https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues


More information
Usage guide in Validation Layer documentation

Design document

Intel VTune profiler 

https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/master/docs/fine_grained_locking_usage.md
https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/master/docs/fine_grained_locking.md
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html

