
1



Introduction to using SPIR-V

2

Spencer Fricke
LunarG, Inc.

Presented at the May Khronos DevDay in Osaka Japan



日本語のスライド

3

https://www.lunarg.com/wp-content/uploads/2023/05/J-SPIRV-Osaka.pdf

https://www.lunarg.com/wp-content/uploads/2023/05/J-SPIRV-Osaka.pdf


Introduction to using SPIR-V

4

Spencer Fricke
LunarG, Inc.

Presented at the May Khronos DevDay in Osaka Japan



Who is Spencer
● Have been working with SPIR-V for 3 years

○ Currently runtime SPIR-V validation for LunarG

● Only have worked with the Vulkan side of SPIR-V
○ Not an OpenCL expert

● Not a compiler engineer by trade
○ Have learned through SPIR-V

● Been part of SPIR-V Working Groups calls before
○ Was not part of its creation

5



Who is this talk for
● Learning how to read (and understand) SPIR-V
● If you need to make a shader tool

○ Even something simple (ex. How many OpLoad calls are there?)

● If you were curious how the “SPIR-V magic” works

6



What is SPIR-V
● “SPIR-V is a binary intermediate representation interchange format used to 

interface with a heterogeneous machine”

7



CPU Program

8

C/C++ code

ARM/x86/MIPS assembly (ISA)



GPU Program

9

GLSL/HLSL code

Assembly for each GPU 
vendor



Using LLVM with CPU

10



Using SPIR-V with GPU

11



Using SPIR-V with GPU

12
Work eliminated OpenGL has to do



SPIR-V is inspired by LLVM IR
● LLVM IR is an internal detail of LLVM
● SPIR-V is a interchange format

○ everything in the Vulkan ecosystem uses to deal with shaders

● Structure of SPIR-V similar to LLVM
● bi-directional translation tool

○ https://github.com/KhronosGroup/SPIRV-LLVM-Translator

13

https://github.com/KhronosGroup/SPIRV-LLVM-Translator


Shader vs Kernel
● OpenCL == Kernel
● Vulkan == Shader

14



Logical vs Physical
● OpenCL == Physical
● Vulkan == Logical (and some Physical via extensions)

15



SPIR-V Grammar JSON
● JSON file found in the SPIR-V Headers
● Equivalent to Vulkan’s vk.xml
● Spec is generated from this file as well

16



Using SPIR-V Grammar - use case

17



SPIR-V Extensions and Capabilities system
● Capabilities are how we communicate to the client API (ex Vulkan)
● Capabilities == Vulkan Features bit

18



19



If the Vulkan feature is not supported, Validation Layers will detect it

20



SPIR-V Instructions
● SPIR-V is a stream of Instructions
● OpCode - name of instruction

○ Always starts with Op

● Operands
○ The words following the OpCode

21



Binary vs Disassembly
● SPIR-V is always a binary
● Presentation is always showing disassembly

22



SPIR-V Instruction

23

%6 = OpTypeInt 32 0



SPIR-V Instruction

24

%6 = OpTypeInt 32 0

0x00040015 0x00000006 0x00000020 0x00000000 



SPIR-V Instruction

25

%6 = OpTypeInt 32 0



SPIR-V Instruction

26

%6 = OpTypeInt 32 0



SPIR-V Instruction

27

%6 = OpTypeInt 32 0



SPIR-V Instruction

28

%6 = OpTypeInt 32 0



SPIR-V Instruction

29

%6 = OpTypeInt 32 0



SPIR-V Instruction

30

Operand[1] = Result Type ID
Operand[2] = Result ID



How is SPIR-V laid out
● Stream of 32-bit Words

31

32 bits

Word 0

Word 1

…



How is SPIR-V laid out
● First 5 words is the header

32

SPIR-V Version

Generator number (ex. glslang)

How many IDs are bound

reserved

Magic Number

32 bits

Word 0

Word 1

…



How is SPIR-V laid out
● Rest of words are the Instructions

33

SPIR-V Version

Generator number (ex. glslang)

How many IDs are bound

reserved

 OpCapability Shader

OpEntryPoint GLCompute %3 "main"

%1 = OpTypeVoid

Magic Number

OpFunctionEnd

32 bits

Word 0

Word 1

…



How is SPIR-V laid out
● 5 sections
● Each has only certain instructions allowed

○ spirv-val will let you know if this is wrong

34



Mode Setting
● High level details about the module
● Entrypoint
● Capabilities and Extensions
● Memory model

○ Logical vs Physical

● Execution mode
○ Ex. OriginUpperLeft vs OriginLowerLeft

35

Mode Setting



● Name of variables
● Source of SPIR-V
● Debugging tools make use of this section

Debug Information

36

Mode Setting

Debug Information



Annotations
● Apply Decorations
● Information for future instructions

○ RelaxedPrecision
○ ArrayStride
○ NonWritable
○ NonReadable

37

Mode Setting

Debug Information

Annotations



Types, variables and constants
● Declare types

○ OpTypeInt, OpTypeStruct, OpTypeSampler, etc

● Declare interface variables
○ Input/Output between shader stages
○ Descriptors (uniforms, storage image, etc)

● Constants
○ Also specialization constants 

38

Mode Setting

Debug Information

Types, variables 
and constants

Annotations



Function Blocks
● Blocks of Functions
● Where the logic occurs

○ Loads, stores, calculations, sampling

39

Mode Setting

Debug Information

Types, variables 
and constants

Function Blocks

Annotations



Understanding Blocks
● Same idea as LLVM
● Multiple Function Blocks
● Each Function Block can have its own Blocks

40



41



42



43

defines new 
Function Block



44

terminates Function Block



45

defines new Block



46

terminates Block



47



48

Makes function call



49

Declare Control Flow



50

Declare Control Flow

Which Block the 
Control Flow merges



51

Conditional decides 
where to go next



52

Conditional decides 
where to go next



53

Blocks never just “fall through”



Parsing a SPIR-V binary

54



Parsing a SPIR-V binary

55



Parsing a SPIR-V binary

56



Parsing a SPIR-V binary

57



Parsing a SPIR-V binary

58



Extended instruction sets
● allows SPIR-V to be agnostic
● Languages describe different rules around the same instructions

○ Ex. Accuracy of functions like sin()

59



60



61

https://registry.khronos.org/SPIR-V/specs/unified1/GLSL.std.450.pdf

https://registry.khronos.org/SPIR-V/specs/unified1/GLSL.std.450.pdf


62



63

<id> xValue: 13



Entry Point, Execution Model, and Execution Mode
● Module == SPIR-V File

○ May have multiple Entry Points

● Model vs Mode

64



Entry Point, Execution Model, and Execution Mode
● Can have more than 1 Entry Point in a module

65



Entry Point, Execution Model, and Execution Mode
● Can have more than 1 Entry Point in a module

66



Entry Point, Execution Model, and Execution Mode
● Execution Model is defined

67



Entry Point, Execution Model, and Execution Mode
● Execution Mode applies to Function, not Entry Point

68



Types
● OpType*
● Can use types to make bigger types
● Define the types using once, shared across the module

69



Types - mat3x2
● Same as

○ vec2
○ vec2
○ vec2

70



Types - mat3x2
● %float = OpTypeFloat 32

71



Types - mat3x2
● %float = OpTypeFloat 32
● %v2float = OpTypeVector %float 2

72



Types - mat3x2
● %float = OpTypeFloat 32
● %v2float = OpTypeVector %float 2
● %mat3v2float = OpTypeMatrix %v2float 3

73



Types - mat3x2
● %float = OpTypeFloat 32
● %v2float = OpTypeVector %float 2
● %mat3v2float = OpTypeMatrix %v2float 3
● %ptr = OpTypePointer Input %mat3v2float

74



Type - Structs

75



Type - Structs

76

● %int = OpTypeInt 32 1
● %float = OpTypeFloat 32



Type - Structs

77

● %int = OpTypeInt 32 1
● %float = OpTypeFloat 32
● %myStruct = OpTypeStruct %int %float %int 



Access Chains
● Used to access part of a variable
● It is a “chain” of “accesses” through the variable

78



Access Chain

79



Access Chain

80



Access Chain

81



Access Chain

82

Result type



Access Chain

83

Base object



Access Chain

84

Indexes



Access Chain

85

Struct



Access Chain

86

index 1 of struct

Struct



Access Chain

87

index 1 of struct

index 2 of array

Struct



Access Chain

88

index 1 of struct

index 2 of array

index 2 of vector

Struct



Access Chain

89

● %20 = OpAccessChain %19 %13 %15 %16 %18
● OpStore %20 %float_0



Questions?

90


