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Who is Spencer
● Have been working with SPIR-V for 3 years

○ Currently runtime SPIR-V validation for LunarG

● Only have worked with the Vulkan side of SPIR-V
○ Not an OpenCL expert

● Not a compiler engineer by trade
○ Have learned through SPIR-V

● Been part of SPIR-V Working Groups calls before
○ Was not part of its creation
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Who is this talk for
● Learning how to read (and understand) SPIR-V
● If you need to make a shader tool

○ Even something simple (ex. How many OpLoad calls are there?)

● If you were curious how the “SPIR-V magic” works
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What is SPIR-V
● “SPIR-V is a binary intermediate representation interchange format used to 

interface with a heterogeneous machine”
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CPU Program
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C/C++ code

ARM/x86/MIPS assembly (ISA)



GPU Program

9

GLSL/HLSL code

Assembly for each GPU 
vendor



Using LLVM with CPU
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Using SPIR-V with GPU
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Using SPIR-V with GPU
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Work eliminated OpenGL has to do



SPIR-V is inspired by LLVM IR
● LLVM IR is an internal detail of LLVM
● SPIR-V is a interchange format

○ everything in the Vulkan ecosystem uses to deal with shaders

● Structure of SPIR-V similar to LLVM
● bi-directional translation tool

○ https://github.com/KhronosGroup/SPIRV-LLVM-Translator
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Shader vs Kernel
● OpenCL == Kernel
● Vulkan == Shader
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Logical vs Physical
● OpenCL == Physical
● Vulkan == Logical (and some Physical via extensions)
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SPIR-V Grammar JSON
● JSON file found in the SPIR-V Headers
● Equivalent to Vulkan’s vk.xml
● Spec is generated from this file as well
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Using SPIR-V Grammar - use case
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SPIR-V Extensions and Capabilities system
● Capabilities are how we communicate to the client API (ex Vulkan)
● Capabilities == Vulkan Features bit
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If the Vulkan feature is not supported, Validation Layers will detect it
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SPIR-V Instructions
● SPIR-V is a stream of Instructions
● OpCode - name of instruction

○ Always starts with Op

● Operands
○ The words following the OpCode
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Binary vs Disassembly
● SPIR-V is always a binary
● Presentation is always showing disassembly
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SPIR-V Instruction
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%6 = OpTypeInt 32 0



SPIR-V Instruction
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%6 = OpTypeInt 32 0

0x00040015 0x00000006 0x00000020 0x00000000 



SPIR-V Instruction
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SPIR-V Instruction
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SPIR-V Instruction
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SPIR-V Instruction
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SPIR-V Instruction
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%6 = OpTypeInt 32 0



SPIR-V Instruction
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Operand[1] = Result Type ID
Operand[2] = Result ID



How is SPIR-V laid out
● Stream of 32-bit Words
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32 bits

Word 0

Word 1

…



How is SPIR-V laid out
● First 5 words is the header
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SPIR-V Version

Generator number (ex. glslang)

How many IDs are bound

reserved

Magic Number

32 bits

Word 0

Word 1

…



How is SPIR-V laid out
● Rest of words are the Instructions
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SPIR-V Version

Generator number (ex. glslang)

How many IDs are bound

reserved

 OpCapability Shader

OpEntryPoint GLCompute %3 "main"

%1 = OpTypeVoid

Magic Number

OpFunctionEnd

32 bits

Word 0

Word 1

…



How is SPIR-V laid out
● 5 sections
● Each has only certain instructions allowed

○ spirv-val will let you know if this is wrong
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Mode Setting
● High level details about the module
● Entrypoint
● Capabilities and Extensions
● Memory model

○ Logical vs Physical

● Execution mode
○ Ex. OriginUpperLeft vs OriginLowerLeft
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Mode Setting



● Name of variables
● Source of SPIR-V
● Debugging tools make use of this section

Debug Information
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Mode Setting

Debug Information



Annotations
● Apply Decorations
● Information for future instructions

○ RelaxedPrecision
○ ArrayStride
○ NonWritable
○ NonReadable
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Mode Setting

Debug Information

Annotations



Types, variables and constants
● Declare types

○ OpTypeInt, OpTypeStruct, OpTypeSampler, etc

● Declare interface variables
○ Input/Output between shader stages
○ Descriptors (uniforms, storage image, etc)

● Constants
○ Also specialization constants 
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Mode Setting

Debug Information

Types, variables 
and constants

Annotations



Function Blocks
● Blocks of Functions
● Where the logic occurs

○ Loads, stores, calculations, sampling
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Mode Setting

Debug Information

Types, variables 
and constants

Function Blocks

Annotations



Understanding Blocks
● Same idea as LLVM
● Multiple Function Blocks
● Each Function Block can have its own Blocks
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43

defines new 
Function Block



44

terminates Function Block
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defines new Block
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terminates Block
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48

Makes function call
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Declare Control Flow
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Declare Control Flow

Which Block the 
Control Flow merges
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Conditional decides 
where to go next
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Conditional decides 
where to go next
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Blocks never just “fall through”



Parsing a SPIR-V binary
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Parsing a SPIR-V binary
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Parsing a SPIR-V binary
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Parsing a SPIR-V binary
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Parsing a SPIR-V binary
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Extended instruction sets
● allows SPIR-V to be agnostic
● Languages describe different rules around the same instructions

○ Ex. Accuracy of functions like sin()
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<id> xValue: 13



Entry Point, Execution Model, and Execution Mode
● Module == SPIR-V File

○ May have multiple Entry Points

● Model vs Mode
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Entry Point, Execution Model, and Execution Mode
● Can have more than 1 Entry Point in a module
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Entry Point, Execution Model, and Execution Mode
● Can have more than 1 Entry Point in a module
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Entry Point, Execution Model, and Execution Mode
● Execution Model is defined
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Entry Point, Execution Model, and Execution Mode
● Execution Mode applies to Function, not Entry Point
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Types
● OpType*
● Can use types to make bigger types
● Define the types using once, shared across the module
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Types - mat3x2
● Same as

○ vec2
○ vec2
○ vec2
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Types - mat3x2
● %float = OpTypeFloat 32
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Types - mat3x2
● %float = OpTypeFloat 32
● %v2float = OpTypeVector %float 2
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Types - mat3x2
● %float = OpTypeFloat 32
● %v2float = OpTypeVector %float 2
● %mat3v2float = OpTypeMatrix %v2float 3
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Types - mat3x2
● %float = OpTypeFloat 32
● %v2float = OpTypeVector %float 2
● %mat3v2float = OpTypeMatrix %v2float 3
● %ptr = OpTypePointer Input %mat3v2float
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Type - Structs
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Type - Structs
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● %int = OpTypeInt 32 1
● %float = OpTypeFloat 32



Type - Structs
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● %int = OpTypeInt 32 1
● %float = OpTypeFloat 32
● %myStruct = OpTypeStruct %int %float %int 



Access Chains
● Used to access part of a variable
● It is a “chain” of “accesses” through the variable
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Access Chain
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Access Chain
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Access Chain
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Access Chain
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Result type



Access Chain
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Base object



Access Chain
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Indexes



Access Chain
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Struct



Access Chain
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index 1 of struct

Struct



Access Chain
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index 1 of struct

index 2 of array

Struct



Access Chain
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index 1 of struct

index 2 of array

index 2 of vector

Struct



Access Chain
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● %20 = OpAccessChain %19 %13 %15 %16 %18
● OpStore %20 %float_0



Questions?
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