
Enhanced Debugging with the Vulkan
Loader

1

Mark Young
LunarG, Inc.

Presented at the Khronos Vulkanised 2023 Conference

Agenda
● Recap of Vulkan Desktop Loader and Layers

● Logging Improvements

● Filtering Environment Variables

● New Docs

2

Vulkan Desktop Loader Overview

3
Summary: Loader finds layers and drivers on your system

● Implicit
○ Automatically loaded

■ Unless defines “enable” environment variable
○ Must define a “disable” environment variable

■ Loader detects “disable” then does not load
○ Typically loaded before explicit layers
○ Example:

■ Steam Fossilize

● Explicit
○ Selected by application, tools, or command-line environment variables
○ Example:

■ Validation

Vulkan Layer Types

4

Vulkan Layer Intercepted Call-Chain

5

Example Instance Call-Chain

Example Device Call-Chain

Note:
If you query your own entrypoints with
vkGetDeviceProcAddr, most device commands
won’t include “Loader Trampoline” in call-chain.

Loader Logging Improvements

6

● Why focus on the Loader?

○ Everyone has loader (requires no extra tools)

● Goals of Improved Logging:
○ Easier diagnosis of warnings and errors
○ Improved analysis of layer and driver issues
○ Understand more about the environment discovered by the loader

Loader Debug Environment Variable

7

● VK_LOADER_DEBUG
○ Comma-delimited list of message levels of interest:

■ error, warn, info, debug, all

● Starting with Vulkan loader 1.3.205*, new options:
○ layer
○ driver

● Examples:
○ Windows: set VK_LOADER_DEBUG=error,warn,layer
○ Linux/Mac: export VK_LOADER_DEBUG=error,warn,driver

* 1.3.205 - GitHub: Feb 2022, Vulkan SDK: April 2022

Layer Discovery Logging

8

● Searched for during all pre-Instance and CreateInstance calls
● Separate searches for Implicit and Explicit Layers separately

LAYER: Searching for layer manifest files
LAYER: In following folders:
LAYER: /home/$USER/.config/vulkan/implicit_layer.d
LAYER: /etc/xdg/vulkan/implicit_layer.d
LAYER: /etc/vulkan/implicit_layer.d
LAYER: /home/$USER/.local/share/vulkan/implicit_layer.d
LAYER: /home/$USER/.local/share/flatpak/exports/share/vulkan/implicit_layer.d
LAYER: /var/lib/flatpak/exports/share/vulkan/implicit_layer.d
LAYER: /usr/local/share/vulkan/implicit_layer.d
LAYER: /usr/share/vulkan/implicit_layer.d
LAYER: Found the following files:
LAYER: /etc/vulkan/implicit_layer.d/renderdoc_capture.json
LAYER: /home/$USER/.local/share/vulkan/implicit_layer.d/steamfossilize_i386.json
LAYER: /home/$USER/.local/share/vulkan/implicit_layer.d/steamfossilize_x86_64.json
LAYER: /home/$USER/.local/share/vulkan/implicit_layer.d/steamoverlay_i386.json
LAYER: /home/$USER/.local/share/vulkan/implicit_layer.d/steamoverlay_x86_64.json
LAYER: /usr/share/vulkan/implicit_layer.d/nvidia_layers.json
LAYER: /usr/share/vulkan/implicit_layer.d/VkLayer_MESA_device_select.json

Driver Discovery Logging

9

● Searched for during all pre-Instance and CreateInstance calls

DRIVER: Searching for driver manifest files
DRIVER: In following folders:
DRIVER: /home/$USER/.config/vulkan/icd.d
DRIVER: /etc/xdg/vulkan/icd.d
DRIVER: /etc/vulkan/icd.d
DRIVER: /home/$USER/.local/share/vulkan/icd.d
DRIVER: /home/$USER/.local/share/flatpak/exports/share/vulkan/icd.d
DRIVER: /var/lib/flatpak/exports/share/vulkan/icd.d
DRIVER: /usr/local/share/vulkan/icd.d
DRIVER: /usr/share/vulkan/icd.d
DRIVER: Found the following files:
DRIVER: /usr/share/vulkan/icd.d/intel_icd.x86_64.json
DRIVER: /usr/share/vulkan/icd.d/lvp_icd.x86_64.json
DRIVER: /usr/share/vulkan/icd.d/radeon_icd.x86_64.json
DRIVER: /usr/share/vulkan/icd.d/lvp_icd.i686.json
DRIVER: /usr/share/vulkan/icd.d/radeon_icd.i686.json
DRIVER: /usr/share/vulkan/icd.d/intel_icd.i686.json
DRIVER: /usr/share/vulkan/icd.d/nvidia_icd.json

Loader vkCreateInstance Call-Chain Logging

10

● With “layer” enabled in VK_LOADER_DEBUG, loader will generate a rough
instance call-chain during vkCreateInstance

○ Lists enabled implicit and explicit layers
○ If layer is implicit, it also details what its disable environment variable is

LAYER: vkCreateInstance layer callstack setup to:
LAYER: <Application>
LAYER: ||
LAYER: <Loader>
LAYER: ||
LAYER: VK_LAYER_MESA_device_select
LAYER: Type: Implicit
LAYER: Disable Env Var: NODEVICE_SELECT
LAYER: Manifest: /usr/share/vulkan/implicit_layer.d/VkLayer_MESA_device_select.json
LAYER: Library: libVkLayer_MESA_device_select.so
LAYER: ||
LAYER: VK_LAYER_KHRONOS_validation
LAYER: Type: Explicit
LAYER: Manifest: /usr/share/vulkan/explicit_layer.d/VkLayer_khronos_validation.json
LAYER: Library: libVkLayer_khronos_validation.so
LAYER: ||
LAYER: <Drivers>

Loader vkCreateDevice Call-Chain Logging

11

● With “layer” and “driver” enabled in VK_LOADER_DEBUG, loader will
generate a rough device call-chain during vkCreateDevice

○ Lists enabled implicit and explicit layers
○ Lists driver enabled by name and selected device info

INFO | LAYER: Failed to find vkGetDeviceProcAddr in layer libVkLayer_MESA_device_select.so
DRIVER | LAYER: vkCreateDevice layer callstack setup to:
DRIVER | LAYER: <Application>
DRIVER | LAYER: ||
DRIVER | LAYER: <Loader>
DRIVER | LAYER: ||
LAYER: VK_LAYER_KHRONOS_validation
LAYER: Type: Explicit
LAYER: Manifest: /usr/share/vulkan/explicit_layer.d/VkLayer_khronos_validation.json
LAYER: Library: libVkLayer_khronos_validation.so
LAYER: ||
DRIVER | LAYER: <Device>
DRIVER | LAYER: Using "NVIDIA GeForce GTX 1650" with driver: "libGLX_nvidia.so.0"

(Notice no VK_LAYER_MESA_device_select this time)

Loader Filter Environment Variables

12

● Previously
○ No way to disable layers or drivers easily
○ Enable required full layer name or driver manifest file

■ VK_INSTANCE_LAYERS
■ VK_DRIVER_FILES/VK_ICD_FILENAMES

● Starting in Vulkan Desktop Loader 1.3.234*

● Meant for Debugging

● CI systems could force specific layers and/or individual
drivers per test scenario

* 1.3.234 - GitHub: Nov 2022, Vulkan SDK: Dec 2022

Filter Environment Variable Format

13

● Case insensitive

● Comma-delimited

● Simple Globs
○ Prefix: VKLayer*
○ Suffix: *validation
○ Substring: *KHRONOS*
○ Whole name: VkLayer_Khronos_validation

● Disable env var evaluated first, then enable
○ Disable everything, the re-enable only what you want

Loader Layer Filter Environment Variables

14

● Enable/Disable Filter Environment Variables
○ VK_LOADER_LAYERS_ENABLE
○ VK_LOADER_LAYERS_DISABLE

● Special Layer Disable Globs
○ ~implicit~
○ ~explicit~
○ ~all~ or *

● Why Debug Only?
○ Disabling a layer that an application is relying on could have

consequences

Example Layer Filter Environment Variables

15

● Disable all implicit layers
○ set VK_LOADER_LAYERS_DISABLE=~implicit~

● Disable all layers
○ set VK_LOADER_LAYERS_DISABLE=*

● Disable all implicit layers, except if Valve is in name:
○ set VK_LOADER_LAYERS_DISABLE=~implicit~
○ set VK_LOADER_LAYERS_ENABLE=*valve*

Loader Driver Filter Environment Variables

16

● Select/Disable Filter Environment Variables
○ VK_LOADER_DRIVERS_SELECT

■ “Select” because all drivers enabled by default
○ VK_LOADER_DRIVERS_DISABLE

● Names matched against driver manifest file name
○ For example: intel_icd.x86_64.json

● Example:

○ Disable all drivers, except if Nvidia is in name:
■ set VK_LOADER_DRIVERS_DISABLE=*
■ set VK_LOADER_DRIVERS_SELECT=*nvidia*

Investigating Bad Layer

17

Investigating Bad Layer (Debug messages)

18

Investigating Bad Layer (Disable All Layers)

19

Investigating Bad Layer (Re-enable Device Select)

20

Investigating Bad Layer (Look For Layer Disable)

21

Investigating Bad Layer (Disable Only Bad Layer)

22

New Docs

23

● Loader Debugging Markdown in Loader Repository
○ https://github.com/KhronosGroup/Vulkan-Loader/blob/master/docs/LoaderDebugging.md

● “The Vulkan Loader and Vulkan Layers: Diagnosing Layer Issues” whitepaper
○ https://www.lunarg.com/wp-content/uploads/2022/12/The-Vulkan-Loader-and-Vulkan-Layers_-

Diagnosing-Layer-Issues.pdf

https://github.com/KhronosGroup/Vulkan-Loader/blob/master/docs/LoaderDebugging.md
https://www.lunarg.com/wp-content/uploads/2022/12/The-Vulkan-Loader-and-Vulkan-Layers_-Diagnosing-Layer-Issues.pdf
https://www.lunarg.com/wp-content/uploads/2022/12/The-Vulkan-Loader-and-Vulkan-Layers_-Diagnosing-Layer-Issues.pdf

Shout Out!

24

● Charles Giessen
○ Current Vulkan Desktop Loader owner
○ Moderator on Vulkan Discord

● Community Involvement
○ Helps us continually improve the Desktop Loader

25

Help Us Improve the
Vulkan SDK and Ecosystem

Share Your Feedback
Take the LunarG annual developer’s survey
● Survey results are tabulated
● Shared with the Vulkan Working Group
● Actions are assigned
● Results are reported

Survey closes February 27, 2023
https://www.surveymonkey.com/r/PVM92RH

https://www.surveymonkey.com/r/PVM92RH

Questions?

26
Photo Inserts Copied from: UnSplash.com

27

