
Using Vulkan Validation Effectively

1

Jeremy Gebben
LunarG, Inc.

Presented at the February Khronos Vulkanised 2023 Conference

Agenda
● What the validation does and how it benefits developers
● How to interpret and fix validation errors
● Configuration options to improve productivity
● Using the debug utilities extension
● Current limitations of validation
● Recent and upcoming improvements

2

What is the Vulkan Validation Layer?
● A shared library containing almost all error checking for Vulkan
● OpenGL had many error code checks that drivers had to implement

○ Checks always enabled in drivers -> useless CPU overhead
○ Most checking was the similar in all drivers -> duplicated effort
○ Over time, OpenGL drivers added non-standard ways to disable this error checking in

production code.

● Vulkan defined the Loader/Layer Interface to allow:
○ Validation during development only, no CPU overhead in released applications
○ Reuse of common checking code
○ Other types of tooling that wasn’t defined during specification development

● Historical note: At one time there were many separate validation layers,
hence the plural name of the Vulkan-ValidationLayers repository.

3

Vulkan Loader / Layer Interface

4

Attend the Vulkan-Loader presentation later today for more details

Types of errors
● Usage - developer is using an API incorrectly

○ memcpy(NULL, src_buffer, 100);
○ Will almost always crash, because copying into the NULL address is an error
○ Vulkan Validation is supposed to find errors of this type

● Runtime - unsuccessful interaction between application and its environment
○ ptr = calloc(1ULL << 31, 8);
○ Allocating 4Gb might succeed or fail, it will depend on the current state of the system
○ Validation can help find some, but not all, of these errors (such as exceeding device limits)
○ If an API call returns a VkResult, you should check it and handle errors.

● Suboptimal usage of the API
○ ptr = calloc(0, 8);
○ “If size is zero, the behavior is implementation defined (null pointer may be returned, or some non-null

pointer may be returned that may not be used to access storage)” cppreference.com”
○ You cannot store anything into a 0 byte buffer, so why try allocate it?
○ Best Practices validation covers checking such as this

5

Validation Quick Start
● Install the Vulkan SDK or OS-provided packages
● Run vkconfig (see next slide)
● From a shell:

export VK_INSTANCE_LAYERS=VK_LAYER_KHRONOS_validation
./your-application

● Note: for non-standard installs you may need to set VK_LAYER_PATH
○ It needs to be set to the directory containing VkLayer_khronos_validation.json

● You can also enable validation when calling vkCreateInstance()
○ Add the layer name to VkInstanceCreateInfo::ppEnabledLayerNames

6

Validation Quick Start (Vulkan Configurator)

7

An example error: vkcube –use_staging
I added an error to a portion of the vkcube source:

VkBufferImageCopy copy_region = {
 .bufferOffset = 0,
 .bufferRowLength = demo->staging_texture.tex_width*2, // ERROR!
 .bufferImageHeight = demo->staging_texture.tex_height,
 .imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1},
 .imageOffset = {0, 0, 0},
 .imageExtent = {demo->staging_texture.tex_width, demo->staging_texture.tex_height, 1},
};
vkCmdCopyBufferToImage(demo->cmd, demo->staging_texture.buffer, demo->textures[i].image,
 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©_region)

8

Validation Output: Error Message
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://www.khronos.org/registry/vulkan/specs/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToImage-pR
egions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

● demo->staging_texture.tex_width is 262144 bytes and the staging buffer was created based on
that size.

9

Validation Output: Valid Usage ID (VUID)
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type = VK_OBJECT_TYPE_COMMAND_BUFFER;
Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; | MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage:
pRegion[0] is trying to copy 523264 bytes plus 0 offset to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which
exceeds the VkBuffer total size of 262144 bytes. The Vulkan spec states: srcBuffer must be large enough to contain all
buffer locations that are accessed according to Buffer and Image Addressing, for each element of pRegions
(https://www.khronos.org/registry/vulkan/specs/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToImage-pRegions-00171
)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

● Almost every error in Vulkan has a Valid usage ID: VUID-*
○ Unique, automatically generated number in the specification text
○ msgNum / MessageID is a hash of the VUID string, used for handling duplicate messages

● Some errors types are not in the specification
○ UNASSIGNED-*: possible error identified by validation developers, should be moved to spec
○ UNASSIGNED-BestPractices-*: best practices warnings
○ SYNC-*: synchonization validation error

10

Validation Output: Object handles
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://www.khronos.org/registry/vulkan/specs/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToImage-pR
egions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

11

Validation Output: Spec reference
VUID-vkCmdCopyBufferToImage-pRegions-00171(ERROR / SPEC): msgNum: 1867332608 - Validation Error: [
VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x56313fd28a00, type =
VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0xd175b40000000013, type = VK_OBJECT_TYPE_BUFFER; |
MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage: pRegion[0] is trying to copy 523264 bytes plus 0 offset
to/from the VkBuffer (VkBuffer 0xd175b40000000013[]) which exceeds the VkBuffer total size of 262144 bytes.
The Vulkan spec states: srcBuffer must be large enough to contain all buffer locations that are accessed
according to Buffer and Image Addressing, for each element of pRegions
(https://www.khronos.org/registry/vulkan/specs/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToImage-pR
egions-00171)
 Objects: 2
 [0] 0x56313fd28a00, type: 6, name: NULL
 [1] 0xd175b40000000013, type: 9, name: NULL

● This takes you back to the section of the spec, for more information

12

Fixing errors
● Fix the first error message first

○ Similar to with C/C++ compiler errors, the first error may cause subsequent errors

● Run in a debugger and use the Break Debug Action
○ Almost all error checking occurs immediately in each Vulkan API call
○ Stack trace will take you to the part of your code causing the error

● Search in the Vulkan-ValidationLayers source for the VUID string to see how it
is validated

● Add object names and command buffer labels with the debug utils extension

13

Configuration options
● Configuring validation is complicated!

○ This section describes some useful settings, not an exhaustive guide
○ See the documentation

● Options:
○ UI: Vulkan Configurator (vkconfig) - separate presentation later today!
○ Config file: vk_layer_settings.txt
○ Programatically: VK_EXT_layer_settings
○ Environment variables (not all options supported)

14

Configuration: Validation areas (1)

15

● Validation is split up into several areas to reduce
performance overhead

● Stateless
○ Checks simple VUIDs that don’t require expensive state

tracking
○ In Vulkan spec:Valid Usage (Implicit) and a few others

● Core
○ Most VUIDs checked here

● Thread Safety
○ Checks external synchronization requirements

● Handle Wrapping
○ Prevents handle reuse bugs

● Object Lifetime
○ Detects use of destroyed objects

Configuration: Validation areas (2)

16

● Shader Based: GPU-Assisted
○ AKA: GPU-AV
○ Instruments SPIR-V to detect problems in shaders
○ Descriptor indexing
○ Buffer Device Address
○ Not supported on Mac

● Shader Based: DebugPrintf
○ Adds printf() functionality to shaders
○ Not supported on Mac

● Synchronization
○ Checks for correct Execution and Memory Dependencies
○ vkCmdPipelineBarrier(), VkEvents, etc.

● Best Practices
○ Performance warnings
○ Mixture of common and vendor-specific checks

Configuration: Validation area settings

17

● Use vkconfig presets
○ Commonly used and tested configurations

● In vk_layer_settings.txt
○ khronos_validation.enables
○ khronos_validation.disables

● Environment variables
○ VK_LAYER_ENABLES and VK_LAYER_DISABLES

● Don’t enable all areas at once (it will be slow), pick one of
○ Core
○ Shader-Based
○ Synchronization
○ Best Practices

● Fix errors in each area, then run Core / Standard Preset again

Configuration: Break on error

18

● Will stop program when an error is detected
○ Calls DebugBreak(); or raise(SIGTRAP);

 # vk_layer_settings.txt
khronos_validation.debug_action = VK_DBG_LAYER_ACTION_BREAK

Configuration: Limit repeated messages

19

● Limit message severity
○ Almost all messages are ‘Error’
○ Except Best Practices, which is ‘Performance’ and

‘Warning’
● Limit times a message is repeated

○ Exact VUID string must match to count as a repeat
○ Env var: VK_LAYER_DUPLICATE_MESSAGE_LIMIT

● Suppress individual error messages entirely
○ Env var: VK_LAYER_MESSAGE_ID_FILTER

vk_layer_settings.txt
khronos_validation.report_flags = error
khronos_validation.enable_message_limit = true
khronos_validation.duplicate_message_limit = 10
khronos_validation.message_id_filter = <comma
separated list>

Debug Utilities Extension
● Debug utilities extension VK_EXT_debug_utils
● Implemented by Vulkan-ValidationLayers
● Provides the ability to attach user-defined names to

○ Vulkan Objects
○ Sequences of commands recorded in Command Buffers
○ Queue submissions

● Names show up in validation error messages and are also used by other tools such as RenderDoc
● Allows applications to register their own validation error handling callback

20

Debug Utilities extension: Object naming
typedef struct VkDebugUtilsObjectNameInfoEXT {
 VkStructureType sType;
 const void* pNext;
 VkObjectType objectType;
 uint64_t objectHandle;
 const char* pObjectName;
} VkDebugUtilsObjectNameInfoEXT;

VkResult vkSetDebugUtilsObjectNameEXT(
 VkDevice device,
 const VkDebugUtilsObjectNameInfoEXT*);

21

● Allows a name to be attached to any vulkan object
● Can help you identify what part of your code is

causing an error.
● Contents of pObjectName is copied to internal

storage.

Objects - 2
Object[0] - VK_OBJECT_TYPE_COMMAND_BUFFER, Handle 0x5566702c9f60, Name "PrepareCB"
Object[1] - VK_OBJECT_TYPE_BUFFER, Handle 0x9fde6b0000000014, Name "TexBuffer(lunarg.ppm)"

Debug Utilities extension: Command buffer labels

Command Buffer Labels - 3
Label[0] - StagingBufferCopy(0) { 0.000000, 0.000000, 0.000000, 0.000000}
Label[1] - StagingTexture(0) { 0.000000, 0.000000, 0.000000, 0.000000}
Label[2] - Prepare { 0.000000, 0.000000, 0.000000, 0.000000}

22

 ● Allows a name to be attached to a sequence of

commands in a command buffer

● Stack-like, multiple labels can be present at once

○ vkCmdBeginDebugUtilsLabelEXT() pushes

○ vkCmdEndDebugUtilsLabelEXT() pops

● The color field is used by tools like RenderDoc

● See also vkQueueBeginDebugUtilsLabelEXT()

● Not printed by default error handler!

typedef struct VkDebugUtilsLabelEXT {
 VkStructureType sType;
 const void* pNext;
 const char* pLabelName;
 float color[4];
} VkDebugUtilsLabelEXT;

void vkCmdBeginDebugUtilsLabelEXT(
 VkCommandBuffer commandBuffer,
 const VkDebugUtilsLabelEXT* pLabelInfo);

Debug Utilities extension: Custom message callback

23

 ● Set up by calling vkCreateDebugUtilsMessengerEXT()

○ Your callback receives a complex struct for each error

○ Same mechanism used for default error logging

● Make your own message format

● Add messages to application logging stream

● Send messages to somewhere other than the console

● Trigger failures in your unit test framework

● Filter out unwanted messages (NOT recommended, built-in filtering is faster)

Debug Utils: vkcube code
demo_push_cb_label(demo, demo->cmd, NULL, "StagingBufferCopy(%d)", i);
VkBufferImageCopy copy_region = {
 .bufferOffset = 0,
 .bufferRowLength = demo->staging_texture.tex_width*2, // ERROR!
 .bufferImageHeight = demo->staging_texture.tex_height,
 .imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1},
 .imageOffset = {0, 0, 0},
 .imageExtent = {demo->staging_texture.tex_width,
 demo->staging_texture.tex_height, 1},
};
vkCmdCopyBufferToImage(demo->cmd, demo->staging_texture.buffer,
 demo->textures[i].image,
 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©_region);
demo_pop_cb_label(demo, demo->cmd); // "StagingBufferCopy"

24

Debug Utilities extension: vkcube error callback
ERROR : VALIDATION - Message Id Number: 1867332608 | Message Id Name:
VUID-vkCmdCopyBufferToImage-pRegions-00171

Validation Error: [VUID-vkCmdCopyBufferToImage-pRegions-00171] Object 0: handle = 0x562780095ca0,
name = PrepareCB, type = VK_OBJECT_TYPE_COMMAND_BUFFER; Object 1: handle = 0x9fde6b0000000014, name =
TexBuffer(lunarg.ppm), type = VK_OBJECT_TYPE_BUFFER; | MessageID = 0x6f4d3c00 | vkCmdCopyBufferToImage:
pRegion[0] is trying to copy 523264 bytes plus 0 offset to/from the VkBuffer (VkBuffer
0x9fde6b0000000014[TexBuffer(lunarg.ppm)]) which exceeds the VkBuffer total size of 262144 bytes. The Vulkan
spec states: srcBuffer must be large enough to contain all buffer locations that are accessed according to
Buffer and Image Addressing, for each element of pRegions
(https://www.khronos.org/registry/vulkan/specs/1.3-extensions/html/vkspec.html#VUID-vkCmdCopyBufferToImage-pR
egions-00171)

Objects - 2
Object[0] - VK_OBJECT_TYPE_COMMAND_BUFFER, Handle 0x562780095ca0, Name "PrepareCB"
Object[1] - VK_OBJECT_TYPE_BUFFER, Handle 0x9fde6b0000000014, Name "TexBuffer(lunarg.ppm)"

Command Buffer Labels - 3
Label[0] - StagingBufferCopy(0) { 0.000000, 0.000000, 0.000000, 0.000000}
Label[1] - StagingTexture(0) { 0.000000, 0.000000, 0.000000, 0.000000}
Label[2] - Prepare { 0.000000, 0.000000, 0.000000, 0.000000}

25

Limitations

26

● Extensions and VUIDs are constantly added
○ Currently there are 14000+ VUIDs!

● Sometimes validating an extension is more difficult
than writing or implementing it.

● Vendor extension validation is entirely up to the vendor
● Triage

○ Try to ensure new KHR or EXT extensions are fully
validated

○ Respond to ‘Incomplete’ Issues to implement VUIDs that
are needed by the community

○ Please submit an Issue on github if we’re missing
something you need!

Limitations: Not all VUIDs checked

27

1.3.227 - Sept 8, 2022

Limitations: Extension VUID coverage

28

EXTENSION CHECKED TOTAL COVERAGE
core 1879 2359 79.65%
VK_VERSION_1_3 1716 2332 73.58%
VK_NV_ray_tracing 953 1555 61.29%
VK_VERSION_1_1 960 1292 74.30%
VK_EXT_mesh_shader 295 1190 24.79%
VK_NV_mesh_shader 491 1178 41.68%
VK_KHR_ray_tracing_pipeline 608 1060 57.36%
VK_VERSION_1_2 740 1004 73.71%
VK_KHR_acceleration_structure 516 912 56.58%
VK_KHR_dynamic_rendering 408 601 67.89%
VK_KHR_synchronization2 473 598 79.10%
VK_KHR_surface 418 547 76.42%
VK_KHR_copy_commands2 345 386 89.38%
VK_EXT_transform_feedback 233 319 73.04%
VK_EXT_extended_dynamic_state 166 316 52.53%

Limitations: Some VUIDs hard to check
● VK_DESCRIPTOR_BINDING_PARTIALLY_BOUND_BIT_EXT (aka ‘bindless’)

○ Only descriptors ‘dynamically used’ by a shader must be valid

○ Bindless descriptor sets may contain 1 million+ descriptors

○ But each shader invocation will only use a few of them

○ Descriptor index is calculated in the shader

■ CPU side code doesn’t know which descriptors to validate.

● Validating all descriptors results in large CPU overhead

● Many false positives due to validating unused descriptors

● Need to use GPU-AV to improve validation

29

Recent Improvements (last 12 months)
● Validation for new extensions

○ Video extensions, VK_EXT_mesh_shader, VK_KHR_descriptor_buffer,
VK_KHR_dynamic_rendering, VK_EXT_pipeline_library, and more

○ Big THANK YOU to those who wrote validation for these extensions

● Synchronization validation Phase II
○ Multi-CommandBuffer and multi-Queue checking

● Increased SPIR-V runtime validation
● Improved performance for multithreaded applications
● GPU-AV performance improvements
● Adding UNASSIGNED validation errors to the spec (ongoing)
● Upgrade from C++11 to C++17

30

Upcoming Improvements
● Better descriptor indexing checking using GPU-AV

○ Improve performance
○ Close gaps in error checking

● Better handling of timeline semaphores and ‘execution-time’ VUIDs
● Shader validation improvements
● Again, please submit an Issue on github if we’re missing something you need!

○ We also accept Pull Requests :)

31

Questions?

32

https://www.lunarg.com/news-insights/white-papers/using-vulkan-validation-effectively-feb2023/

33

Help Us Improve the
Vulkan SDK and Ecosystem

Share Your Feedback
Take the LunarG annual developer’s survey
● Survey results are tabulated
● Shared with the Vulkan Working Group
● Actions are assigned
● Results are reported

Survey closes February 27, 2023
https://www.surveymonkey.com/r/PVM92RH

