
Source-level Shader Debugging
in Vulkan With RenderDoc
Jeremy Hayes, LunarG, Inc.
Greg Fischer, LunarG, Inc.
October 2022

Introduction

Source-level debugging is a powerful tool that can aid shader development. This capability is
now available to Vulkan shaders using RenderDoc, the DirectX Shader Compiler (DXC), and the
glslangValidator shader compiler. This document describes how to generate the necessary
SPIR-V instructions which enable source-level debugging.

Generating debug information
Source-level debugging in SPIR-V requires an extension called
NonSemantic.Shader.DebugInfo.100. This extension is supported by DXC and glslangValidator.
The following stages are currently supported: vertex, geometry, tessellation control and
evaluation, fragment, and compute. Shaders optimized by spirv-opt may also be debugged.

Using DXC
DXC can be used to generate debug information within SPIR-V from HLSL using the following
command line:

\path\to\dxc.exe -spirv -fspv-target-env=vulkan1.3

-T <target-profile> -E <entry-point>

-fspv-extension=SPV_KHR_non_semantic_info

-fspv-debug=vulkan-with-source

<hlsl-src-file> -Fo <spirv-bin-file>

The command-line arguments relevant to debug information are described below.
● -fspv-extension=SPV_KHR_non_semantic_info instructs the compiler to use the

SPV_KHR_non_semantic_info extension which is required to use non semantic
extended instruction sets. This is not required for Vulkan1.3.

● -fspv-debug=vulkan-with-source instructs the compiler to embed the source string
in the DebugSource instruction. RenderDoc reads the high-level source from this
instruction.

October 2022 Source-level Shader Debugging in Vulkan With RenderDoc 1



Using glslangValidator
glslangValidator can also be used to generate debug information within SPIR-V from HLSL. In
addition, glslangValidator can also generate debug information from GLSL. To generate debug
information from HLSL, use the following command line.

\path\to\glslangValidator.exe -e main -gVS -D -o <spirv-bin-file>

<hlsl-src-file>

The command-line arguments relevant to debug information are described below.
● -gVS instructs the compiler to embed the source string in the DebugSource instruction

(similar to the -fspv-debug=vulkan-with-source argument in DXC).
● -Od disables HLSL legalization and optimization (similar to the -fcgl argument in DXC).
● -D tells the compiler that the source is HLSL.

To generate debug information from GLSL, the command line is very similar.

\path\to\glslangValidator.exe -e main -gVS -V -o <spirv-bin-file>

<glsl-src-file>

The only difference is that the -D argument is replaced with -V.

Debugging with RenderDoc

SPIR-V shaders containing debug information can be debugged interactively using RenderDoc.
The latest stable builds (v1.22) of Renderdoc support this functionality. These builds can be
located on the RenderDoc website.

A complete demonstration of RenderDoc is outside the scope of this document. However, we
will demonstrate how to access the source debugger within RenderDoc. First, you will need to
launch your application and capture a frame (please see the RenderDoc documentation if you
do not know how to do this).

October 2022 Source-level Shader Debugging in Vulkan With RenderDoc 2



Once you have a captured frame, select a draw command from the event
browser located on the left-hand side.

October 2022 Source-level Shader Debugging in Vulkan With RenderDoc 3



Next, right-click on a pixel in the texture viewer.

October 2022 Source-level Shader Debugging in Vulkan With RenderDoc 4



Next, click the debug button in the pixel context window located in the lower-right
corner.

A window containing the fragment-shader source should appear. You can step forwards and
backward through the statements using the buttons at the top of the debugger window.
Variables identifiers and values will be displayed in the lower right corner.

October 2022 Source-level Shader Debugging in Vulkan With RenderDoc 5



Vertex shaders can also be debugged by right-clicking a vertex in the mesh viewer and
selecting “Debug this Vertex.”

Future Work
Currently, all debug information is embedded within the SPIR-V shader. Future updates to DXC
and glslangValidator will allow the debug information to be stored in a separate file (similar to a
program database or .pdb file in Visual Studio). Support for other stages/shaders is also possible.

References
● DXC - https://github.com/Microsoft/DirectXShaderCompiler
● glslangValidator - https://github.com/KhronosGroup/glslang
● SPIR-V extension -

https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/mai
n/nonsemantic/NonSemantic.Shader.DebugInfo.100.html

● RenderDoc - https://renderdoc.org/

October 2022 Source-level Shader Debugging in Vulkan With RenderDoc 6

https://github.com/Microsoft/DirectXShaderCompiler
https://github.com/KhronosGroup/glslang
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/main/nonsemantic/NonSemantic.Shader.DebugInfo.100.html
https://htmlpreview.github.io/?https://github.com/KhronosGroup/SPIRV-Registry/blob/main/nonsemantic/NonSemantic.Shader.DebugInfo.100.html
https://renderdoc.org/

