
The Vulkan Profiles Toolset Solution
Creating portable Vulkan Applications in terms of Vulkan capabilities

Christophe Riccio, LunarG
February 2022

1

https://www.lunarg.com/

Why do Vulkan Profiles matter? 3
Explicit Vulkan capabilities requirements 3
Examples of Vulkan Profiles use cases 3
Vulkan Profiles from Vulkan developers’ point of view 5

The Vulkan Profiles Toolset Components 5
The Vulkan Profiles Toolset Code Generation 7

Using the Vulkan Profiles schema 8
What is the Vulkan Profiles schema? 8
Finding Vulkan Profiles files 9
The Vulkan Profiles documentation 10
Limitations of Vulkan Profiles schema validation 10

Using the Vulkan Profiles layer 11
Simulation vs. Emulation 11
Reducing Vulkan application development time 11
Enabling the Profiles layer using Vulkan Configurator 13
Enabling the Profiles layer using environment variables 18
Vulkan Profiles layer limitations 19

Using the Vulkan Profiles library 19
Integration of the Vulkan Profiles library in an application 20
Generating Vulkan Profiles library 20
Basic usage of the Vulkan Profiles library 21
Advanced usage of the Vulkan Profiles library 23

Vulkan Profiles Toolset future improvements 23
Vulkaninfo 23
Vulkan Capabilities minimum requirements 23
Generating Vulkan Profiles automatically 23

February 2022 The Vulkan Profiles Toolset Solution 2

Why do Vulkan Profiles matter?
From the perspective of LunarG, the Vulkan Profiles aren’t aiming at building a perfectly
homogenous Vulkan ecosystem against an overly heterogeneous ecosystem: Vulkan remains a
cross-platform industry standard enabling developers to target a wide range of devices with the
same graphics API.

Instead, Vulkan Profiles look at the problem with a different paradigm: a Vulkan application is
not designed to target the entire ecosystem, it has a domain of relevance.

Explicit Vulkan capabilities requirements
The Vulkan Profiles make the Vulkan capabilities requirements explicit between the application
and the domain and we should expect a co-evolution formalized by future profiles versions.

Vulkan Profiles are a tool to help create a portable Vulkan application within a specific Vulkan
domain.

Conceptually, Vulkan Profiles can be understood as the explicit expression and formalization of
Vulkan capabilities requirements and can provide clear communication of these requirements
within the Vulkan community.

Examples of Vulkan Profiles use cases
Vulkan Profiles can be applied for a multitude of use cases, including:

● Roadmap profiles: to express guidance on the future direction of Vulkan devices.
● Platform profiles: to express the Vulkan support available on different platforms.
● Device profiles: to express the Vulkan support of a single Vulkan driver for a Vulkan

device.
● Architecture profiles: to express the Vulkan support of a class of GPUs.
● Engine profiles: to express some rendering code paths requirements of an engine.
● Etc.

February 2022 The Vulkan Profiles Toolset Solution 3

https://www.lunarg.com/

For example, a Platform Profile may be used by a platform vendor to specify to the Vulkan
application developers the minimum level of Vulkan capabilities support available on its
platform.

For example, an engine can specify the requirements of rendering code paths hence the
requirements that leveraging such code paths imply for Vulkan applications.

February 2022 The Vulkan Profiles Toolset Solution 4

Vulkan Profiles from Vulkan developers’ point of view
LunarG provides the Vulkan Profiles Toolset as part of the Vulkan SDK so that Vulkan
application developers may leverage Vulkan Profiles during Vulkan application development and
delivery. Developers can create portable Vulkan applications in terms of Vulkan capabilities
which include extensions, features, properties, formats, and queues requirements.

The Vulkan Profiles Toolset is effectively a collection of components for Vulkan application
developers to build portable Vulkan applications using Vulkan Profiles. Of course, the Vulkan
Profiles only handle portability in terms of Vulkan capabilities.

The Vulkan Profiles Toolset is still under development at the BETA stage.

The Vulkan Profiles Toolset Components
The Vulkan Profiles Toolset includes the following components:

● The Vulkan Profiles schema
○ A JSON data format to exchange Vulkan capabilities: extensions, features,

properties, formats, and queue properties.
○ Each revision of Vulkan API is represented by a schema that supersedes older

versions of Vulkan API.
○ The schema covers Vulkan 1.3 and all extensions.

● The Vulkan Profiles layer
○ A layer used during application development to ensure adherence to the

requirements of a chosen Vulkan Profile.
○ It simulates but doesn't emulate Vulkan capabilities. It works together with the

Validation layer which reports errors when using capabilities not exposed by the
Vulkan developer system.

○ The layer requires a Vulkan 1.0 driver that supports the
VK_KHR_get_physical_device_properties2 extension.

● The Vulkan Profiles library
○ A header-only, C++ library to use Vulkan Profiles in Vulkan applications.
○ The library allows checking Profiles support on a device and creating a VkDevice

instance with the profile features and extensions enabled.
○ The library requires a Vulkan 1.0 driver that supports the

VK_KHR_get_physical_device_properties2 extension.
○ A Vulkan sample is available for demonstrating Vulkan Profiles library usage.

● The Vulkan Profiles comparison table
○ Human-readable format of Vulkan Profiles in a table to enable comparison.

February 2022 The Vulkan Profiles Toolset Solution 5

https://www.lunarg.com/vulkan-sdk/
https://vulkan.lunarg.com/doc/sdk/latest/windows/profiles_layer.html
https://vulkan.lunarg.com/doc/sdk/latest/windows/profiles_layer.html#technical-details
https://github.com/KhronosGroup/Vulkan-ValidationLayers
https://vulkan.lunarg.com/doc/sdk/latest/windows/profiles_api_library.html
https://github.com/KhronosGroup/Vulkan-Samples/pull/421
https://vulkan.lunarg.com/doc/sdk/latest/windows/profiles_definitions.html

Furthermore, the Vulkan SDK includes implementations of some Vulkan Profiles
using the Vulkan Profiles JSON Schema:

● VP_KHR_roadmap_2022.json

● VP_ANDROID_baseline_2021.json

● VP_LUNARG_desktop_portability_2021.json

Each profiles JSON file may contain multiple variants of a profile. For example
VP_LUNARG_desktop_portability_2021.json specifies VP_LUNARG_desktop_portability_2021

profile for Windows and Linux but also VP_LUNARG_desktop_portability_2021_subset profile for
macOS, which has specific additional requirements regarding VK_KHR_portability_subset

extension.

The Vulkan Profiles API is not part of the Vulkan specification but part of a library for a very
specific reason: we wanted the Vulkan Profiles solution to be effectively usable on day one.
Hence, it should work with current Vulkan devices currently owned by users.

The solution to this problem is to not deliver the Vulkan Profiles API through the Vulkan drivers
that can’t be updated easily on many platforms, but to deliver the Vulkan Profiles API as part of
the Vulkan application codebase.

As a result, the Vulkan Profiles library is compatible with any Vulkan 1.0 drivers that support
VK_KHR_get_physical_device_properties2 and can be leveraged simply by including it in the
Vulkan application codebase.

The Vulkan Profiles Toolset components on the Vulkan developer system

February 2022 The Vulkan Profiles Toolset Solution 6

https://github.com/KhronosGroup/Vulkan-Profiles/blob/master/profiles/VP_KHR_roadmap_2022.json
https://github.com/KhronosGroup/Vulkan-Profiles/blob/master/profiles/VP_ANDROID_baseline_2021.json
https://github.com/KhronosGroup/Vulkan-Profiles/blob/master/profiles/VP_LUNARG_desktop_portability_2021.json
https://www.khronos.org/registry/vulkan/specs/1.3-extensions/man/html/VK_KHR_portability_subset.html

The Vulkan Profiles Toolset Code Generation
Considering the complexity of the Vulkan ecosystem, there isn't a single Vulkan Profile that can
fit all needs. As a result, on top of the predefined Vulkan Profiles, the Vulkan Profiles Toolset
solution is designed around the idea of code generation.

The Vulkan Profiles Toolset is also generated against vk.xml (the canonical representation of the
Vulkan specification) and Vulkan Profiles. This design guarantees that any Vulkan developer
can regenerate the entire Vulkan Profiles Toolset solution with any new Vulkan Header update
or any set of Vulkan Profiles JSON files.

The diagram on the following page shows the Vulkan Profiles Toolset generation pipeline with
every produced component:

February 2022 The Vulkan Profiles Toolset Solution 7

https://github.com/KhronosGroup/Vulkan-Headers/blob/main/registry/vk.xml
https://github.com/KhronosGroup/Vulkan-Profiles/tree/master/profiles
https://github.com/KhronosGroup/Vulkan-Headers

Using the Vulkan Profiles schema

What is the Vulkan Profiles schema?
The Vulkan Profiles schema is a JSON file generated using the vk.xml file. For each Vulkan
Header revision, we can generate a Vulkan Profiles schema. Generating a new Vulkan Profiles
schema may be necessary to leverage Vulkan capabilities introduced with a new Vulkan Header
revision.

February 2022 The Vulkan Profiles Toolset Solution 8

https://github.com/KhronosGroup/Vulkan-Headers/blob/main/registry/vk.xml

The role of the Vulkan Profiles schema is to ensure that profile files, created in
the ecosystem, will be syntactically valid files. Specifically, the schema validated the name of the
structures and structures members so there can’t be any spelling errors. Similarly, the schema
lists all valid enum values.

Validating Vulkan Profiles JSON files against the schema can be performed using any tools
typically used for this purpose, including the web-based validators such as:

- http://www.jsonschemavalidator.net/
- https://json-schema-validator.herokuapp.com/
- https://jsonschemalint.com/#/version/draft-04/markup/json/

But also C++ libraries such as Valijson and most likely any JSON schema validation library
already integrated into your engine codebase.

Finding Vulkan Profiles files
As described previously, there can be many different kinds of Vulkan Profiles files.

The Vulkan SDK and Vulkan Profiles repository include available Roadmap and Platform
profiles that will help Vulkan developers to target specific Vulkan ecosystem domains. LunarG is
planning to continue populating the Vulkan SDK and Vulkan Profiles repository with useful
profiles.

GPUInfo.org provides Device Profiles thanks to an exporter following the Vulkan Profiles
schema for any Vulkan driver report. These device profiles can be useful to check that a Vulkan
application is working correctly with the capabilities of older Vulkan drivers. Additionally,
collecting multiple Devices Profiles could be done to help create a Platform profile or an Engine
profile but creating such profiles remains a manual process.

In the next major SDK release, we are planning to improve Vulkaninfo to provide an export of
the system device Vulkan capabilities following the Vulkan Profiles schema.

Furthermore, we want to provide a profile generator tool that will be capable of merging multiple
profiles together but this remains a manual process that can be facilitated by regenerated
Vulkan SDK documentation.

February 2022 The Vulkan Profiles Toolset Solution 9

http://www.jsonschemavalidator.net/
https://json-schema-validator.herokuapp.com/
https://jsonschemalint.com/#/version/draft-04/markup/json/
https://github.com/tristanpenman/valijson
https://www.lunarg.com/vulkan-sdk/
https://github.com/KhronosGroup/Vulkan-Profiles/tree/master/profiles
https://gpuinfo.org/
https://vulkan.lunarg.com/doc/view/latest/windows/vulkaninfo.html
https://vulkan.lunarg.com/doc/sdk/latest/windows/profiles_definitions.html

Concept to generate a profile from device profiles but this remains a manual process.

The Vulkan Profiles documentation
The Vulkan Profiles documentation can be used to easily read the requirements of a profile and
compare multiple profiles side by side.

It can easily be regenerated and augmented with more profiles by simply copying the list of
Vulkan Profiles files we want to document into the Profiles directory in the source.

Limitations of Vulkan Profiles schema validation
Unfortunately, a profile file would pass schema validation even if it requires a minimum Vulkan
API version but uses the Vulkan structure that was introduced after that specified Vulkan
Header revision. This makes the profile definition infringing its own requirements which is
indeed incorrect. Unfortunately, vk.xml is a snapshot of a Vulkan Header revision for a specific
Vulkan API version so it doesn’t store with which Vulkan Header revision a Vulkan capability
was introduced.

For this reason, we recommend using the Vulkan Profiles schema revision that matches the
Vulkan Profile API version minimum requirements. Many revisions of the profiles schema for
Vulkans Header are available on Khronos.org.

Similarly, the Profiles JSON Schema can’t validate a lot of the semantic aspects. For example,
the runtimeDescriptorArray Vulkan feature can be enabled using multiple structures:
VkPhysicalDeviceDescriptorIndexingFeaturesEXT,
VkPhysicalDeviceDescriptorIndexingFeatures, and VkPhysicalDeviceVulkan12Features.
Syntactically, all these structures can be used simultaneously for the definition of a profile but
what happens if they are specified with different values?

February 2022 The Vulkan Profiles Toolset Solution 10

https://vulkan.lunarg.com/doc/sdk/latest/windows/profiles_definitions.html
https://github.com/KhronosGroup/Vulkan-Profiles/tree/master/profiles
https://github.com/KhronosGroup/Vulkan-Headers/blob/main/registry/vk.xml
https://schema.khronos.org/vulkan/

To address these cases, we can use the Vulkan Profiles layer which reports warning messages.

Using the Vulkan Profiles layer

Simulation vs. Emulation
The primary function of the Vulkan Profiles Layer is simply to simulate the capabilities of a
device, modifying device responses to Vulkan query function calls by the application. Of course,
the underlying device or driver function is never actually changed, they merely appear to have
the capabilities of a different device or driver.

This is different from emulation which would change the actual behavior of the underlying device
or driver to match that of a different device or driver. In all but one case, the Profiles layer
simulates changes and leaves it up to the Validation Layer to inform the developer about
functions that do not adhere to the proper limits.

The one exception is portability subset extension emulation, which causes the Profiles Layer to
add the VK_KHR_portability_subset extension to the device extensions list, and pre-populate the
VkPhysicalDevicePortabilitySubsetPropertiesKHR and
VkPhysicalDevicePortabilitySubsetFeaturesKHR structures of this extension with default values.

Effectively, the Vulkan Profiles layer is used for downgrading the Vulkan application developers’
system capabilities.

Reducing Vulkan application development time
The Vulkan Profiles layer is expected to be used during Vulkan application development and
testing. It aims at drastically improving the way we test our Vulkan applications across a wide
range of hardware capabilities.

Typically when developing a Vulkan application, we need to check that our Vulkan application
works on a set of platforms, devices, and even Vulkan driver versions. However, this process
can be particularly tedious and time-consuming which translates into cutting some testing or
reducing support of old Vulkan drivers.

February 2022 The Vulkan Profiles Toolset Solution 11

Typical testing strategy, a device and driver at a time

The Vulkan Profiles and the Vulkan Profiles layer enable a new strategy: instead of checking
capabilities of a device and driver set at a time, the solution allows checking an entire range of
devices and drivers at a time by checking against a Vulkan profile that represents all these
devices or better, the Vulkan application requirements directly.

Testing Vulkan capabilities support against a Vulkan profile

The Vulkan Profiles layer can be used for many use cases:
- Using C.I. to ensure that the Vulkan application never adds unintentional Vulkan

capabilities requirements.
- Verifying that the Vulkan application falls back correctly when a driver doesn’t support a

capability without updating the drivers or recompiling the Vulkan application.

February 2022 The Vulkan Profiles Toolset Solution 12

- Verifying whether a Vulkan application behavior on a machine is due to
the capabilities of that machine.

- Verifying the Vulkan application works on a less capable Vulkan device than the Vulkan
developer device.

- Verifying the Vulkan Profile is well formed, with no unexpected duplicated references of
Vulkan capabilities.

- Excluding device extensions and image formats to validate the robustness of the Vulkan
application.

- Etc.

Enabling the Profiles layer using Vulkan Configurator
We highly recommend using Vulkan Configurator to use Vulkan Layers to improve Vulkan
application development effectiveness.

Before Vulkan Configurator, a Vulkan developer would have to configure the layers either
programmatically or by using environment variables specified by the layers documentation,
which required a significant and continuous learning curve as the Vulkan layers capabilities
evolved.

Vulkan Configurator was created to present the Vulkan layers with an intuitive interface enabling
developers to use layer features with existing Vulkan applications, instantly and dramatically
reducing development iteration time as no compilation, no learning of the new settings, and no
tracking of the new features is required. The features are directly available in the GUI.

When we open Vulkan Configurator, we are greeted with the following window.

February 2022 The Vulkan Profiles Toolset Solution 13

https://vulkan.lunarg.com/doc/sdk/latest/windows/vkconfig.html

February 2022 The Vulkan Profiles Toolset Solution 14

The Vulkan Configurator UI comprises six areas:
1) Vulkan Layers Management: this area controls whether the Vulkan Layers override is

active or not. It also determines whether the override is applied only to a selection of
Vulkan applications or to all Vulkan applications. Finally, this area specifies whether the
override remains active or not when Vulkan Configurator is closed.

2) Vulkan Layers Configurations: the list of pre-configured layers configurations. Vulkan
Configurator is installed with a selection of built-in configurations that are listed on the
screenshot. Each built-in configuration is designed to handle a specific Vulkan
application developer use case. Using the context menu, we can design user-defined
layer configurations to create layers configurations for our specific use cases.

3) Vulkan Application Launcher: this area allows running any Vulkan application with the
selected layers configuration.

4) Log window: on start-up, when selecting a layer configuration or updating the layers list
of a layer configuration, the log window will display the “Vulkan Development Status”
which reports the version of various components, relevant paths for Vulkan developers,
and the list of available layers. When launching a Vulkan application from Vulkan
Configurator, the log window will display anything sent to stdout or stderr from the Vulkan
layers, Vulkan applications, and the Vulkan Loader.

5) Layers selection for a layers configuration: the “Edit Layers…” button allows opening the
“Edit Vulkan Layers” window to select the layers for the following actions:

a) to override,
b) to exclude,
c) or to be handled by the Vulkan applications.

The “Find Layers...” button allows adding paths to find additional layers on the system.
6) Layers configuration settings: the tree of settings for each layer. If the layers have setting

presets, they are displayed just below the layer name.

February 2022 The Vulkan Profiles Toolset Solution 15

Select the “Portability” built-in configuration from the “Vulkan Layers Configurations” list.

This configuration includes the Vulkan Validation layer and the Vulkan Profiles layer.
To the right, we can see the layers settings.

February 2022 The Vulkan Profiles Toolset Solution 16

We can hide the Vulkan Validation layer settings for now by clicking the carrot next to
VK_LAYER_KHRONOS_validation and observe the Vulkan Profiles layer settings.

The Portability built-in configuration is created to be directly usable with the LunarG Desktop
Portability 2021 subset profile. Hence, we can check that vkcube can run correctly with this
profile.

Selecting the notification message type, we get additional logging information to understand
how the Vulkan Profiles behave.

February 2022 The Vulkan Profiles Toolset Solution 17

For more information about the tool is available in the Vulkan Configurator documentation

Enabling the Profiles layer using environment variables
The Vulkan loader has environment variables for enabling layers.

These variables are VK_LAYER_PATH which is used to manually set the loader’s search path for
layers, and VK_INSTANCE_LAYERS which is used to set active layers and in what order they
should be called.

The Profiles layer’s name is VK_LAYER_KHRONOS_profiles. When turning it on, make sure it
runs closest to the driver, since we want all layers and applications to see the simulated limits
instead of the real limits.

February 2022 The Vulkan Profiles Toolset Solution 18

https://vulkan.lunarg.com/doc/sdk/latest/windows/vkconfig.html

Set the VK_INSTANCE_LAYERS environment variable to:
VK_INSTANCE_LAYERS=<other layers>:VK_LAYER_KHRONOS_profiles.

Next, we need to point the Vulkan Profiles layer to our desired Profile JSON file using the
VK_KHRONOS_PROFILES_FILENAME environment variable by setting it to the path of the profiles
JSON file.

From here, we can run our application and get the profile capabilities applied to the Vulkan
device.

For additional information on layer settings, have a look at the Vulkan Profiles layer
documentation.

Vulkan Profiles layer limitations
The Vulkan Profiles layer only changes the reported capabilities of a Vulkan driver. Used
together with the Vulkan Validation layer, the solution will report errors when running Vulkan
applications that use capabilities that are not reported by the layer.

However, the Vulkan Profiles layer has many limitations: it doesn’t emulate Vulkan capabilities
hence we are expecting it to be used on Vulkan developers machines which we think will
effectively support more capabilities that the reality of the targeted devices in the Vulkan
ecosystem by the Vulkan applications.

Furthermore, each operating system implements platform specific extensions. Hence, testing on
all required operating systems remains necessary for full Vulkan capabilities requirements
verification.

Also, it’s not impossible that a Vulkan driver reports a supported capability but effectively this
capability is not usable because of a Vulkan driver bug. The Vulkan Profiles layer will not help
for such cases but we are hoping for Vulkan Profile definitions to help document such scenarios.

Finally, and probably most importantly, the Vulkan Profiles layer doesn’t help with device
performance testing but we are hoping using the Vulkan Profiles layer will free some
development cycles for Vulkan developers to focus on this essential aspect.

Using the Vulkan Profiles library
The Vulkan Profiles library is a helper library for Vulkan application developers that provides the
following set of APIs:

● APIs to verify instance-level and device-level support for a particular Vulkan profile.

February 2022 The Vulkan Profiles Toolset Solution 19

https://vulkan.lunarg.com/doc/sdk/latest/windows/profiles_layer.html
https://vulkan.lunarg.com/doc/sdk/latest/windows/profiles_layer.html

● Instance and device creation APIs that automatically enable the
extensions and features required by a particular Vulkan profile.

● Capability introspection APIs to query the extensions, features, properties, formats, and
queue families required by a particular Vulkan profile.

A Vulkan sample using the Vulkan Profiles library is available in the Khronos Vulkan Samples
repository.

Integration of the Vulkan Profiles library in an application
The Vulkan Profiles API library is provided as a header-only, C++ library
(vulkan/vulkan_profiles.hpp) that is bundled with the Vulkan SDK. C++ applications thus can
simply use the Vulkan Profiles library by including this header-only, C++ library with no Vulkan
application build system changes.

The library is primarily designed to be dynamically linked to the Vulkan implementation (loader
or ICD). If applications want to dynamically load Vulkan then they have to make sure (one way
or another) that the Vulkan API symbols seen by the Vulkan Profiles header-only library are
valid and correspond to the dynamically loaded entry points.

In order to enable support for other language bindings, the library is also available in a header +
source pair (vulkan_profiles.h and vulkan_profiles.cpp). In the Vulkan Profiles repository,
there is no build configuration for this variant of the library as it's not meant to be used as a
standalone static or dynamic library. Instead, developers can drop the files into their own project
to build the Vulkan profiles library into it. This may also come handy if the developer would like
to optimize compilation times by not having to include the rather large header-only library in
multiple source files.

The repository also contains a debug version of the Vulkan Profiles API library which allows
logging unsupported capabilities of a Vulkan Profile when checking its support on a system.

The profile definitions are enabled depending on the preprocessor definitions coming from the
Vulkan headers; thus the application has to make sure to configure the right set of preprocessor
definitions. As an example, the VP_ANDROID_baseline_2021 profile depends on the
VK_KHR_android_surface instance extension; thus in order to use this profile, the application
must define VK_USE_PLATFORM_ANDROID_KHR.

Generating Vulkan Profiles library
The Vulkan Profiles library is a header-only, C++ library. It doesn’t support loading dynamically
Vulkan Profiles because the solution provides the simplest integration to an engine codebase. In
most cases a Vulkan application can’t just load a profile, it implements that profile within the

February 2022 The Vulkan Profiles Toolset Solution 20

https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/tooling/profiles/README.md
https://github.com/KhronosGroup/Vulkan-Samples/blob/master/samples/tooling/profiles/README.md
https://vulkan.lunarg.com/
https://github.com/KhronosGroup/Vulkan-Profiles/blob/master/library/include/vulkan/vulkan_profiles.h
https://github.com/KhronosGroup/Vulkan-Profiles/blob/master/library/source/vulkan_profiles.cpp
https://github.com/KhronosGroup/Vulkan-Profiles

codebase. Hence, the Vulkan Profiles library just simplifies the initialization code
of that implementation.

However, Vulkan developers may be interested in creating their own profiles, while still relying
on the Vulkan Profiles library. For this reason, the Vulkan Profiles library can be trivially
generated to include support for any desired Vulkan Profiles. The Vulkan developer just needs
to clone the Vulkan Profiles repository and replace the list of profiles files before rebuilding the
project and grabbing the regenerated vulkan_profiles.hpp.

Basic usage of the Vulkan Profiles library
The typically expected usage of the Vulkan Profiles library is for applications to target a specific
profile with their application and leave it to the Vulkan Profiles library to enable any necessary
extensions and features required by that profile.

In order to do so, the application first has to make sure that the Vulkan implementation supports
the selected profile as follows:

VkResult result = VK_SUCCESS;

VkBool32 supported = VK_FALSE;

VpProfileProperties profile{

VP_LUNARG_DESKTOP_PORTABILITY_2021_NAME,

VP_LUNARG_DESKTOP_PORTABILITY_2021_SPEC_VERSION

};

result = vpGetInstanceProfileSupport(nullptr, &profile, &supported);

if (result != VK_SUCCESS) {

// something went wrong

...

}

else if (supported != VK_TRUE) {

// profile is not supported at the instance level

...

}

The above code example verifies the instance-level profile requirements of the
VP_LUNARG_desktop_portability_2021 profile, including required API version and instance
extensions.

If the profile is supported by the Vulkan implementation at the instance level, then a Vulkan
instance can be created with the instance extensions required by the profile as follows:

VkApplicationInfo vkAppInfo{ VK_STRUCTURE_TYPE_APPLICATION_INFO };

// Set API version to the minimum API version required by the profile
vkAppInfo.apiVersion = VP_LUNARG_DESKTOP_PORTABILITY_2021_MIN_API_VERSION;
VkInstanceCreateInfo vkCreateInfo{ VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO };
vkCreateInfo.pApplicationInfo = &vkAppInfo;
// set up your own instance creation parameters, except instance extensions

February 2022 The Vulkan Profiles Toolset Solution 21

https://github.com/KhronosGroup/Vulkan-Profiles
https://github.com/KhronosGroup/Vulkan-Profiles/tree/master/profiles
https://github.com/KhronosGroup/Vulkan-Profiles/tree/master/library/include/vulkan

// as those will come from the profile
...

VpInstanceCreateInfo vpCreateInfo{};
createInfo.pCreateInfo = &vkCreateInfo;
createInfo.pProfile = &profile;

VkInstance instance = VK_NULL_HANDLE;
result = vpCreateInstance(&vpCreateInfo, nullptr, &instance);
if (result != VK_SUCCESS) {

// something went wrong
...

}

The above code example will create a Vulkan instance with the API version and instance
extensions required by the profile (unless the application overrides any of them, as explained
later).

Make sure to set the apiVersion in the VkApplicationInfo structure at least to the minimum API
version required by the profile, as seen above, to ensure the correct Vulkan API version is used.

Once a Vulkan instance is created, the application can check whether individual physical
devices support the selected profile as follows:

result = vpGetPhysicalDeviceProfileSupport(instance, physicalDevice, &profile, &supported);
if (result != VK_SUCCESS) {

// something went wrong
...

}
else if (supported != VK_TRUE) {

// profile is not supported at the device level
...

}

Finally, once a physical device supporting the profile is selected, a Vulkan device can be created
with the device extensions and features required by the profile as follows:

VkDeviceCreateInfo vkCreateInfo{ VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO };
// set up your own device creation parameters, except device extensions
// and device features as those will come from the profile
...

VpDeviceCreateInfo vpCreateInfo{};
createInfo.pCreateInfo = &vkCreateInfo;
createInfo.pProfile = &profile;

VkDevice device = VK_NULL_HANDLE;
result = vpCreateDevice(physicalDevice, &vpCreateInfo, nullptr, &device);
if (result != VK_SUCCESS) {

// something went wrong
...

}

February 2022 The Vulkan Profiles Toolset Solution 22

Advanced usage of the Vulkan Profiles library
The Vulkan Profiles library provides many functionalities to extend Vulkan Profiles with
additional capabilities or even alter Vulkan Profiles to drop some requirements according to
Vulkan developers needs. All these functionalities are described in the Vulkan Profiles library
documentation.

For more information on the Vulkan Profiles Library API, have a look at the API reference.

Vulkan Profiles Toolset future improvements
The main area of possible improvements of the Vulkan Profiles Toolset is relative to the
production of the Vulkan Profiles.

Vulkaninfo
In the short term, we are planning to add a Vulkan Profiles file export into Vulkaninfo. This
would allow generating Device Vulkan Profiles directly from the console. Once this file is
generated, we could simply modify it to remove specific capabilities to check that our Vulkan
application fallback or fail correctly when these capabilities are not available on an end-user
system.

Furthermore, it would be a good addition to provide a library form of Vulkaninfo so that any
Vulkan tools could generate Vulkan Profiles files easily, for example to integrate the Vulkan
capabilities of the system into a crash log.

Vulkan Capabilities minimum requirements
The Vulkan minimum requirements of the Vulkan specification are described in the features,
limits and formats and additional capabilities sections of the specification. Unfortunately, there is
no programmable way to access these minimum requirements. To enable this approach, vk.xml
would need some additional information to reflect these requirements.

This would enable generating a Vulkan Profiles file with the Vulkan minimum requirements and
provide a great base of an exhaustive representation of the Vulkan capabilities.

Generating Vulkan Profiles automatically
The LunarG Desktop Portability profile was created using an ad hoc approach. It serves at
expressing a use case of the Vulkan Profiles but we should assume that most Vulkan
applications should be able to produce their own profile representing the ecosystem of Vulkan

February 2022 The Vulkan Profiles Toolset Solution 23

https://github.com/KhronosGroup/Vulkan-Profiles/blob/master/library/TUTORIAL.md#advanced-usage
https://github.com/KhronosGroup/Vulkan-Profiles/blob/master/library/TUTORIAL.md#advanced-usage
https://github.com/KhronosGroup/Vulkan-Profiles/blob/master/library/TUTORIAL.md#api-reference
https://vulkan.lunarg.com/doc/view/latest/windows/vulkaninfo.html
https://vulkan.lunarg.com/doc/view/latest/windows/vulkaninfo.html
https://vulkan.lunarg.com/doc/view/latest/windows/vulkaninfo.html
https://www.khronos.org/registry/vulkan/specs/1.3/html/vkspec.html#features
https://www.khronos.org/registry/vulkan/specs/1.3/html/vkspec.html#limits
https://www.khronos.org/registry/vulkan/specs/1.3/html/vkspec.html#formats
https://www.khronos.org/registry/vulkan/specs/1.3/html/vkspec.html#capabilities
https://github.com/KhronosGroup/Vulkan-Headers/blob/main/registry/vk.xml

devices and drivers the Vulkan applications should run on.

Such a Vulkan application profile could be generated by gathering all the profile files of all the
Vulkan devices and with the oldest supported driver and using a Profiles Generator tool to
combine the requirements of all these profiles. This tool remains to be created.

Finally, it would be useful to have a tool that compares Vulkan Profiles and shows the
differences. For example, this tool could determine whether a Vulkan device exposes the Vulkan
capabilities necessary for an engine represented by a Vulkan Profile without requiring access to
this device.

February 2022 The Vulkan Profiles Toolset Solution 24

