
 

Results of 2020 Vulkan Ecosystem & 
SDK Survey​ 

 
Karen Ghavam, LunarG 
January 2021 
 

Table of Contents 
 
Executive Summary 3 

Where did you hear about this survey? 4 

What type of Vulkan developer are you? 5 

How long have you been developing with the Vulkan API? 6 

Your development is for what type of use case? 7 

Have you released your Vulkan development project for public use? 8 

What is the target of your Vulkan application? Check all that apply 9 

What operating systems/architectures do you use for your development environment? Check all 
that apply: 10 

What is the primary Linux distribution you use for development? 11 

Which Linux Vulkan SDK do you use? Check all that apply: 12 

What files or library types do you require for your Windows development environment? Check 
all that apply: 13 

When doing Vulkan development for macOS, iOS, and/or tvOS, check all that apply. 14 

Rank the importance of the following layers/tools in the macOS SDK? (1 is most important, 9 is 
least important) 15 

Do you use the Khronos Vulkan Validation Layer (VK_LAYER_KHRONOS_validation)? 16 

How would you rate the completeness of validation layer coverage? 17 

How often do you see false error reports (error reported when it shouldn't have been)? 18 

For the Vulkan layers or Validation Layer objects listed below, indicate their usefulness: 19 

1 



For the Vulkan tools/layers (INCLUDED in the LunarG Vulkan SDK) listed below, indicate their 
usefulness: 20 

For the Vulkan ecosystem tools/layers (not included in the SDK) that are listed below, indicate 
their usefulness: 21 

Are you familiar with the Vulkan Configurator (vkconfig)? 22 

Rank the following vkconfig improvement areas from 1 to 9 (1 is most important, 9 is least 
important) 23 

Do you have additional suggestions for the improvement of the Vulkan Configurator? 24 

What is your front end for creating SPIR-V? Check all that apply: 24 

If you use glslangValidator (HLSL to SPIR-V), why do you use this tool instead of using DXC 
(DirectX Shader Compiler)? 25 

Which vendor-independent tool do you use for multi-frame API capture and analysis? Check all 
that apply: 26 

The online SDK documentation (vulkan.lunarg.com/doc/sdk) contains a specification built for the 
SDK header version. Do you use the online SDK specification? 27 

For the online SDK specification documentation, which is your preferred selection of formats? 
(Select one) 28 

How would you rate the overall quality of the Vulkan ecosystem today? 29 

Open-Ended Feedback 30 
API (Feedback was shared with the Vulkan Working Group) 30 
Specification (Feedback was shared with the Vulkan Working Group) 30 
Tutorials, Samples, and Developer Documentation 31 
Vulkan-HPP (Feedback was shared with the Vulkan-HPP developers) 31 
macOS (Feedback was shared with the MoltenVK developers) 32 
Developer tools, ecosystem needs/pain points 32 
Validation Layers 33 
Shader Tool Chain 35 
SDK 35 

Key Actions for LunarG 36 
 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        2 



Executive Summary 
This report provides the results from the LunarG ecosystem survey completed in November of 
2020.  
 
Methodology: 

1. LunarG developed this Vulkan ecosystem survey to gauge the Vulkan community’s use 
of and satisfaction with the current Vulkan ecosystem. This is a follow-up survey to the 
previous LunarG survey completed in December 2019 (fourth Vulkan ecosystem survey 
by LunarG). 

2. LunarG attempted to reach as many Vulkan developers as possible -- both SDK users 
and non-SDK users. LunarG advertised the survey on Twitter, Reddit, LinkedIn, the 
Khronos DevRel slack channel, and sent it directly to 13,000+ members of the LunarG 
LunarXchange Vulkan SDK mailing list. 

1. 59% of respondents are hobbyists or developing for non-commercial reasons. 40% of 
the respondents are commercial developers. Throughout this report, if the results for 
commercial developers only vs. the total population revealed a difference, it is shown.  
 

Key points: 
1. Vulkan developers have become more experienced, which is resulting in feedback and 

suggestions that are more knowledgeable, constructive, and helpful than in previous 
surveys. 

2. There were 364 respondents (slightly more than last year). 
3. Respondents were a good mix of developers for Linux, Windows, Android,  iOS/macOS, 

and Google Stadia. 
4. Although the Vulkan SDK is desktop focused, some Android developers were also 

represented in the survey.  
a. There were 101 total Android-based respondents (28% of total respondents),  

i. 51% were commercial developers, 46% were hobbyists 
ii. 56% had released their work or were planning to do so 

5. The survey respondents overall gave a distinctly favorable score on the quality of the 
ecosystem. This is the same as last year. 

6. Our investment in synchronization validation in the last year pleased many folks in the 
ecosystem. It was the “top hitter” in being a very useful validation layer object, and 
people want more… 

 
The last chapter of this report is “Key Actions for LunarG.” This chapter lists all of the identified 
ecosystem improvement requests in LunarG’s control that will be prioritized and worked on in 
the coming year. 
 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        3 



Where did you hear about this survey? 

 

  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        4 



What type of Vulkan developer are you? 

 
 
Note: 59% of respondents are hobbyists. 40% of respondents are commercial 
developers. Through this report, if resulting data for commercial developers only was 
different than the overall population, those differences are shown. 
 
 
 
 

  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        5 



How long have you been developing with the Vulkan 
API? 
All respondents: 

 
Commercial respondents only (more years of experience): 

 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        6 



Your development is for what type of use case?  

 

 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        7 



Have you released your Vulkan development project 
for public use? 
All respondents: 

 
Commercial developer respondents only: 
 

 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        8 



What is the target of your Vulkan application? Check 
all that apply 
All respondents: 

 
Commercial developers only: 

 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        9 



What operating systems/architectures do you use for 
your development environment? Check all that 
apply: 

 

  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        10 



What is the primary Linux distribution you use for 
development? 
All respondents: 

 
Commercial developers only: 

 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        11 



Which Linux Vulkan SDK do you use? Check all that 
apply: 

 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        12 



What files or library types do you require for your 
Windows development environment? Check all that 
apply: 

 
 
Note: We haven’t been including debug and pdb files due to an unacceptable size increase to 
the Windows SDK. In the future we will be creating separate, selectable packages for various 
build types. 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        13 



When doing Vulkan development for macOS, iOS, 
and/or tvOS, check all that apply. 
 

 
 
Note: There are still situations where MoltenVK provides extensions/functionality that can only 
be accessed by linking directly to MoltenVK instead of using the Vulkan Loader. That may be 
driving some of the usage of MoltenVK without the loader and validation layers. It is also more 
likely that developers are doing their validation on a Windows or Linux platform and then using 
MoltenVK as a driver for their solution on macOS and hence link directly to MoltenVK. 
 
 
 
 
 
 

  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        14 



Rank the importance of the following layers/tools in 
the macOS SDK? (1 is most important, 9 is least 
important) 

 
 
Note: If you only include commercial developers in the responses, the outcome is the same. 
 
GPU-AV and Debug Printf require Vulkan 1.1 + fragmentStoresAndAtomics, 
vertexPipelineStoresAndAtomics, shaderint64. MoltenVK is at Vulkan 1.1 and supports the 
Atomics. Adding support for shaderint64 is feasible which could enable future support of 
GPU-AV with MoltenVK. 
 

  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        15 



Do you use the Khronos Vulkan Validation Layer 
(VK_LAYER_KHRONOS_validation)? 

 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        16 



How would you rate the completeness of validation 
layer coverage? 

 
 
If you only include commercial developers in the answers, there is no change in the results. 
 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        17 



How often do you see false error reports (error 
reported when it shouldn't have been)? 

 
 
Note: If you only include responses from commercial developers, there is no change in the 
results. 

  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        18 



For the Vulkan layers or Validation Layer objects 
listed below, indicate their usefulness: 

 
 
Note: If you only include commercial developers in the responses, the outcome is the same. We 
are very pleased with the usefulness of the synchronization validation. The investment there has 
been significant and very useful for Vulkan developers. 
 

  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        19 



For the Vulkan tools/layers (INCLUDED in the 
LunarG Vulkan SDK) listed below, indicate their 
usefulness: 
All responses: 

 
Commercial developers only:

  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        20 



For the Vulkan ecosystem tools/layers (not included 
in the SDK) that are listed below, indicate their 
usefulness: 
All responses: 

 
 
Commercial developers only: No significant difference 
 
. 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        21 



Are you familiar with the Vulkan Configurator 
(vkconfig)? 

 
 
Note: Although awareness of the Vulkan Configurator is at 47.5%, this is high considering it was 
just released with more robust support in the summer of 2020. We anticipate the usage of this 
tool to continue to increase in the next year due to its usefulness and planned continued 
enhancements. More information about the Vulkan Configurator is ​documented in the SDK​. 
 
  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        22 

https://vulkan.lunarg.com/doc/sdk/latest/windows/vkconfig.html


 

Rank the following vkconfig improvement areas from 
1 to 9 (1 is most important, 9 is least important) 

 
 
So it turns out that the top requested feature to the Vulkan Configurator is already LunarG’s top 
priority and is actively being developed. The solution will rely on JSON for layer developers to 
expose the layer settings.  
 
As of the December SDK release, Vulkan Configurator provides a command line interface to 
override layers. This feature could be particularly useful for continuous integration testing. 
 

  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        23 



Do you have additional suggestions for the 
improvement of the Vulkan Configurator? 
 
Open ended feedback indicated that the API to enable layers is quite confusing and that the 
Vulkan Configurator was able to resolve this issue by interpreting the layer settings for the user. 
The comments in the survey also emphasized the need for better in-application documentation 
of the settings. Work has already begun to add some of these in-application documentation. 
 

What is your front end for creating SPIR-V? Check 
all that apply: 
All responses: 

 
  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        24 



Commercial developers respondents only: 
 

 

If you use glslangValidator (HLSL to SPIR-V), why 
do you use this tool instead of using DXC (DirectX 
Shader Compiler)? 
The major themes were: 

1. glslangValidator is smaller and it is familiar 
2. Precedence (DXC was not included in SDKs until the summer of 2020. Note: there were 

some folks who were not aware that DXC is included in the SDK (Linux, Windows, and 
macOS) 

3. Most of my shaders are GLSL 
4. I need a library version (not just offline executable) for DXC 

  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        25 



Which vendor-independent tool do you use for 
multi-frame API capture and analysis? Check all that 
apply: 

 
 
Note: If you only include commercial developers in the responses, the results are almost 
equivalent. 
 

 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        26 



The online SDK documentation 
(vulkan.lunarg.com/doc/sdk) contains a specification 
built for the SDK header version. Do you use the 
online SDK specification? 

 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        27 



For the online SDK specification documentation, 
which is your preferred selection of formats? (Select 
one) 

 

  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        28 



How would you rate the overall quality of the Vulkan 
ecosystem today? 
 

 
 

  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        29 



Open-Ended Feedback 
In the survey there were multiple places to provide some open-ended feedback: 

1. What tools would you recommend for the macOS SDK? 
2. How could the validation layers be improved? 
3. What features, tools, and/or improvements would you like to see added to the LunarG 

Vulkan SDK (Windows, Linux, and/or macOS)? 
4. If your rating of the overall quality of the Vulkan ecosystem is fair or poor, what are your 

pain points? 
5. What inhibits you from effectively and efficiently developing Vulkan applications? 

 
All of the comments were grouped into the following categories and reviewed. 

1. API and API Complexity  
2. Specification  
3. Tutorials/Samples/Developer Documentation 
4. Vulkan-HPP 
5. macOS  
6. Developer tools, ecosystem needs/pain points 
7. Validation Layers 
8. Shader Tool chain 
9. SDK 

 
All of the comments were shared with the Khronos working group and ecosystem project 
owners. For each topic area the key themes of the feedback is provided below. 

API​ (Feedback was shared with the Vulkan Working Group) 
1. Supporting both desktop and mobile under one API added complication. 
2. Would love to have a video Encode/Decode solution.  
3. The verbosity of the API slows down development 
4. It’s a very complex API 
5. Reliable extension availability across multiple platforms 
6. Would be nice to have extension grouping via feature levels 

 

Specification ​(Feedback was shared with the Vulkan Working Group) 
1. Despite improvements that have been made, the single html page still performs slowly. 
2. Better cross-referencing of information would be appreciated 
3. Small guide pages for topics like synchronization, required queue family types, etc. 

would make it easier.  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        30 



Tutorials, Samples, and Developer Documentation 
This topic area had some of the most comments. Developers are wanting good tutorials, good 
documentation regarding best practices and common design patterns, and good samples. 
LunarG resources are focused on the development of the Validation-Layers, Vulkan-Loader, 
Vulkan SDK, GFXReconstruct, Vulkan-Tools, devsim, apidump, and the Vulkan Configurator. 
However all of the feedback has been shared with the group of engineers contributing to the 
KhronosGroup/Vulkan-Samples​ repository and working on ecosystem documentation. They are 
reviewing the feedback and will take into account this feedback as they continue their work over 
the next year. Please take a look at ​ KhronosGroup/Vulkan-Samples​ to see if there are useful 
samples there and feel free to submit issues or contribute. In addition there is a Trello project 
where they can vote for proposed samples at 
https://trello.com/b/1yFqP8ZJ/vulkan-samples-requests​. 

Vulkan-HPP ​(Feedback was shared with the Vulkan-HPP developers) 
1. There was a statement about shipping HEAD of the Vulkan-HPP in the SDK not being 

useful.  
a. This was a misconception. The version of vulkan.hpp shipped in the Vulkan SDK 

comes from KhronosGroup/Vulkan-Headers 
2. Vulkan-HPP provided a better coding experience than the standard Vulkan C API. Better 

promotion of Vulkan-HPP and showcasing it’s proper use in official tutorials would be 
helpful. 

3. Concern areas for Vulkan-HPP 
a. Newer versions of Vulkan-HPP in the Vulkan SDK frequently caused a breakage. 
b. The size of Vulkan-HPP 

  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        31 

https://github.com/KhronosGroup/Vulkan-Samples
https://github.com/KhronosGroup/Vulkan-Samples
https://github.com/KhronosGroup/Vulkan-Samples
https://trello.com/b/1yFqP8ZJ/vulkan-samples-requests


macOS ​(Feedback was shared with the MoltenVK developers) 

1. There were multiple folks with concerns about the need to link directly against MoltenVK 
to get access to the MoltenVK API and extensions. And that if you wanted to use the 
Vulkan Loader and Validation Layers you would lose access to the MoltenVK API and 
extensions. 

2. The documentation between the macOS SDK and the KhronosGroup/MoltenVK 
README documentation in regards to the runtime is inconsistent and needs clarification. 

3. Installation and usage of the macOS SDK can be confusing and needs some 
clarification. 

4. People want more Vulkan extension support in MoltenVK (such as ray tracing) 
5. There was a request for RenderDoc inclusion in the macOS SDK. Renderdoc is not 

supported yet in a macOS environment. 
 

Developer tools, ecosystem needs/pain points 
1. Ecosystem is fragmented in terms of tools and APIs. 
2. A desire for additional bindings to the Vulkan API such as C# and Rust 
3. More helper and utility libraries are needed 

a. Such as an EGL-like library for setting up a reasonable swapchain 
4. No software Vulkan implementation exists.  

a. This is not true actually. There is a software implementation of Vulkan called 
“Swiftshader'' available at​ https://github.com/google/swiftshader​. In addition Mesa 
20.3 supports Vulkan software rendering via VALLIUM and llvmpipe. 

5. A continued need for a profiler that can be used across platforms and GPUs 
6. Some way (e.g. layer) to enable mocking vulkan calls (for testing boring things like 

allocators in contrived settings (different memory types, for example)); non-coherent 
memory type simulation layer, this would help when targeting some android systems 

7. An automatic check or a correction for memory alignment in buffer objects. 
a. The validation layers already do checks for correct memory alignment. If you find 

a case where an incorrect memory alignment is not detected, please submit an 
issue to the ​validation layers repository​. 

  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        32 

https://github.com/google/swiftshader
https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues


Validation Layers 
There were many, many comments and LunarG read every one to make sure it was already 
logged in our github issue tracker or on our TO DO list. One of my favorite comments was: 
“Honestly, keep on trucking - the validation layer is awesome”. We take pride and work hard to 
continuously improve this important component of the Vulkan ecosystem. And we do 
acknowledge there is still room to improve. 
 
 Here is a list of some of the comments that have some specific responses that may be useful 
for developers: 
 

1. Coverage 
a. There was a request for more clear documentation of the gaps in validation layer 

coverage. This exists today. With each SDK, a coverage report is generated. 
Here is the html version of this report that is included with the 1.2.162.0 SDK 
(​https://vulkan.lunarg.com/doc/sdk/1.2.162.0/windows/validation_error_database.
html​). There is also a downloadable CSV version for each SDK version. 

b. There was a request to have all extensions validated. The Vulkan Working Group 
and LunarG ensure that any EXT or KHR extension is validated by the validation 
layers as they are released. Vendor specific extensions are not monitored by 
LunarG or the working group for validation layer coverage. This would be the 
responsibility of the IHV. 

c. There was a request for more validation inspection of buffers and images. This is 
done as needed when adding VUID support for particular VUs to the validation 
layers. 

d. More validation for descriptor indexing was requested. This is logged in the 
enhancement list for GPU Assisted validation 
(​https://github.com/KhronosGroup/Vulkan-ValidationLayers/projects/3​)  

2. Error messages 
a. A “friendly debug name” was requested for objects in validation errors. This 

already exists for object naming in the validation error reporting. 
b. There were numerous comments about how validation errors should be more 

immediate to help identify a more exact place of the error.  
i. It is very difficult to do this. In Vulkan, it is valid to create 'invalid' objects if 

they are not used. For this reason, much validation must be deferred until 
submit-time. 

c. Create a stack trace of the error’s origin (API call) when validation is done at 
queue submit time. 

i. This is currently tracked as an enhancement to the message reporting in 
the validation layers error message improvements project 
(​https://github.com/KhronosGroup/Vulkan-ValidationLayers/projects/2​) 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        33 

https://vulkan.lunarg.com/doc/sdk/1.2.162.0/windows/validation_error_database.html
https://vulkan.lunarg.com/doc/sdk/1.2.162.0/windows/validation_error_database.html
https://github.com/KhronosGroup/Vulkan-ValidationLayers/projects/3
https://github.com/KhronosGroup/Vulkan-ValidationLayers/projects/2


d. There was a request to have debugPrintf messages have their own type flags, 
instead of being bundled with the “info” flag, so they can be enabled without 
having to enable the other “info” messages. This has been logged as a potential 
enhancement request in the project for GPU Assisted validation 
(​https://github.com/KhronosGroup/Vulkan-ValidationLayers/projects/3​) 

e. There was a request to include the validation layer source code line in the error 
message. This existed in the past but was intentionally removed due to user 
feedback. However VUIDs are unique and you can use the VUID in the error 
message to search the source code. 

f. It was mentioned that in Windows 10, the messages printed to the console can 
have a weird format and that adding a newline for every sentence would be 
useful. This is the intention and purpose of using the VK_EXT_Debug_utils 
extension. 

g. Request: extensions for common debuggers such as Visual Studio that supports 
validation layer errors being displayed through the debug output window 

i. This is currently supported through the 
VK_DBG_LAYER_ACTION_DEBUG_OUTPUT layer setting. This setting 
is defined in the vk_layer_settings.txt file found in the Vulkan SDK in the 
Config directory. You can also enable this feature using vkconfig (select 
the “Debug Output” under Debug Action for any of the Validation Vulkan 
Layer Configurations).  

3. Improve the performance of the validation layers.  
4. Synchronization Validation 

a. Synchronization validation layers have been incredibly useful for application 
developers. People want more.  

5. Warnings/Best Practices 
a. There were multiple requests for “Best Practice” warnings such as: 

i. Warn on deprecated function usage  
ii. Some insight into common ""mis-patterns"" or unusual behavior 
iii. Some insights into potential performance warnings 

b. The BEST PRACTICES validation layer object covers many of these items to 
some degree.  More information on the BEST PRACTICES can be found here: 
https://vulkan.lunarg.com/doc/sdk/latest/windows/best_practices.html  

 

  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        34 

https://github.com/KhronosGroup/Vulkan-ValidationLayers/projects/3
https://vulkan.lunarg.com/doc/sdk/latest/windows/best_practices.html


Shader Tool Chain 
1. Multiple concerns about the shader toolchain (glsl/hlsl) in terms of functionality and 

quality. 
a. The shader toolchain folks would ask anyone experiencing problems to 

open/ping issues on github. Here are the related github repositories: 
i. SPIRV-Cross 
ii. Glslang 
iii. SPIRV-tools 
iv. Microsoft DirectXShaderCompiler 
v. SPIRV-reflect 

2. Make sure online compilation in addition to offline compilation is supported well. 
3. The addition of SPIRV-Reflect is great. It is a perfect example of a good Vulkan tool. It 

dones one job. It is lightweight. And it does it well. 
 

SDK 
This list represents the most commonly requested features or feedback for the Vulkan SDK. 

1. SDK is not as feature rich such as Metal Kit, DirectX TK, or game console SDKs 
2. Would like more tools to help with performance tuning 
3. Folks indicated they wanted DXC in the SDK. As of August, DXC is in the SDK for 

Windows, Linux, and macOS 
4. SDK is a big “blob.” Breaking it into smaller packages and inclusion of all the build types 

(debug, static, dynamic, PDB, …) would be more useful 
5. Linking to the chunked specification would be nice.  
6. Scripts to be able to clone and build all of the repositories included in the SDK. 
7. Some simple getting started libraries such as vk-bootstrap would be useful. 
8. An automatic check or a correction for memory alignment in buffer objects. 
9. Add packages for more Linux distributions such as BSD or Arch Linux. 

  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        35 

https://github.com/KhronosGroup/SPIRV-Cross
https://github.com/KhronosGroup/glslang
https://github.com/KhronosGroup/SPIRV-Tools
https://github.com/microsoft/DirectXShaderCompiler
https://github.com/KhronosGroup/SPIRV-Reflect


Key Actions for LunarG 
This list is a consolidation of the identified enhancements from the survey feedback. It is not 
prioritized in terms of what features will be added and in what order. Continued planning inside 
of LunarG throughout the year will make decisions about which of these features will be added. 

1. Add more features to the macOS SDK. Time permitting more functionality will be added 
to the macOS SDK 

a. GPU Assisted Validation (and Debug Printf) 
i. GPU-AV and Debug Printf require Vulkan 1.1 + 

fragmentStoresAndAtomics, vertexPipelineStoresAndAtomics, 
shaderint64. MoltenVK is at Vulkan 1.1 and supports the Atomics. Adding 
support for shaderint64 is feasible which could enable future support of 
GPU-AV with MoltenVK. 

b. iOS as a target of the SDK 
c. Port to macOS 

i. Devsim 
ii. GFXReconstruct 
iii. Monitor 
iv. Screenshot 

2. For the vulkan configurator, add these additional enhancements: 
a. Ability for vkconfig to detect and configure/order non-SDK layers 
b. Link to Vulkan specification for reported VUID violations 
c. Include in-application documentation for layers 
d. Add diagnostic capabilities to inspect the health and status of my Vulkan 

installation 
e. Search capability for the output log area 
f. Add a command line interface to Vulkan Configurator features 
g. Continued reliability and UI design improvements 
h. Make Vulkan Configurator a library for 3rd party Vulkan developer tool 

3. SDK Additions 
a. DXC API library 
b. VOLK 
c. Vulkan Hardware Capability Viewer 
d. Vulkan Memory Allocator 
e. Create separate packages for debug builds and PDB files for Windows SDK 

components 
f. Linkage to the Chunked specification from the validation layer errors (note: One 

format needs to be chosen for this and the HTML format currently being used 
was requested from a higher percentage of users. So most likely this change will 
not be made). 

g. Include a script to build all the repository versions included in the SDK. 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        36 



i. Note: The release notes for each SDK has a list of branches or commits 
for all the included repositories. In addition, with each SDK, there is a 
CONFIG.json that is a programmatic way to determine all the branches 
and commits. You can read about the API to download this information on 
the SDK download site (see the​ SDK version query and download API 
documentation​).  

ii. It would be useful to also create a script to read the contents of this 
config.json and clone and build all of the SDK repository versions. 

h. Include vk-bootstrap in the SDK as a simple getting started example. 
i. For synchronization validation, create a tool to visualize the synchronization. Both 

as defined by the specification and what is being actualized by the application. 
j. More tools to help with performance tuning 
k. Packaging for additional distributions such as BSD or Arch Linux.  

i. Note: LunarG resources aren’t available to do more Linux packaging for 
the SDK. It was hoped that the ability to ​query SDK versions and 
repository versions for the SDK​ would enable Linux distributors to create 
Linux packages themselves. 

4. macOS and MoltenVK 
a. The documentation between the macOS SDK and the KhronosGroup/MoltenVK 

README documentation is inconsistent and needs clarification. 
b. Installation and usage of the macOS SDK can be confusing and needs some 

clarification. 
c. Have the Vulkan Validation layers compatible/available with MoltenVK extensions 

at the same time.  
5. Vulkan Validation Layers  

a. Improve the performance  
i. In the last 3 months, LunarG has started a performance initiative for the 

validation layers. The first step was to create a performance regression 
test suite to prevent future impacts to performance as development 
continues. Some bottleneck areas have also been identified and will 
receive some tuning in the months to come. If you have a workload that is 
showing unacceptable performance while using the validation layers, and 
you are willing to share it with LunarG, let us know. You can contact us at 
info@lunarg.com 

b. Continue development on the synchronization validation to fill out more valid 
usage checks! 

i. Focused work at LunarG continues working on synchronization validation. 
After a complete triage of all CTS failures with synchronization, the 
synchronization validation is ready to be removed from “alpha quality” to 
production quality. This is already available on the validation layer github 
repository and will be included in the next SDK release to be released in 
the January timeframe. 

c. Continue filling out validation layer VUID checks  

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        37 

https://vulkan.lunarg.com/content/view/latest-sdk-version-api
https://vulkan.lunarg.com/content/view/latest-sdk-version-api
https://vulkan.lunarg.com/content/view/latest-sdk-version-api
https://vulkan.lunarg.com/content/view/latest-sdk-version-api
mailto:info@lunarg.com


i. Filling out validation layer VUID checks is always occurring at LunarG 
throughout the year. The github issues that are submitted as missing 
VUID checks are categorized and “incomplete” and given top priority 
since they are missing VUID checks found by actual application 
developers. Once all of them are complete, the work can begin on filling 
out additional VUID checks not reported by users. 

6. Vulkan Loader 
a. Applications need a way to query all the layers (can do this today), but to also 

know which layers are implicit and which layers are explicit (can’t differentiate 
between them today). Applications are having issues with bad implicit layers 
causing crashes in their applications and need a way to query the layers for 
logging purposes, and possibly disable them. 

i. LunarG intends to take this to the Working Group to get an API defined to 
enable this querying (and potential disabling of layers by an application). 

1. Define a vkEnumarateInstanceLayerProperties2 (or similar) that 
will list the layers and also indicate which layers are implicit 

2. Define a programmatic way for users to disable layers at create 
Instance time, most likely as a pNext struct in vkCreateInstance 

ii. Another feature that will be released soon is “​safe mode for layer loading​” 
that will be implemented in the loader. 

1. The current plan is to implement a safe mode that only disables 
layers that were not explicitly enabled, either through 
vkCreateInstance or environment variables. This means that 
explicit layers would behave the same as outside safe mode. 
Implicit layers would still run when they are enabled with an 
environment variable (either VK_INSTANCE_LAYERS or the 
layer-specific envar) but would not ever run purely because they 
are installed to the system. The goal is to eliminate the layers that 
no one knows are installed to a system. This would allow tools like 
steam and renderdoc to still work in safe mode (because both 
enabled their tools through envars) but would disable layers that 
aren't being used. 

 

 

 
 
 
 
 
 

Jan 2021 LunarG 2020 Vulkan Ecosystem & SDK Survey Results        38 

https://github.com/KhronosGroup/Vulkan-Loader/issues/513

