
Vulkan Unified Validation
Layer
Mark Lobodzinski, LunarG
April 2019

Introduction
Early in the development of the Vulkan validation layers, there was A Layer For Everything --
nearly a dozen individual validation layers. With the introduction of handle wrapping and the
increased specialization of types of layer checks, the order in which the layers were loaded
became critical for correct operation. However, communicating the optimal layer ordering, if not
outright enforcing it, became increasingly difficult.

The issue was ameliorated on desktop platforms by the introduction of a meta-layer that
abstracted the physical layer set, but this was only a partial solution and was unavailable on
mobile platforms. Over time, the number of discrete validation layers were reduced to five but
the goal for usability, maintainability, and messaging remained that of a single, unified validation
layer.

A Need For Change
Over time, the number and names of the canonical validation layers have changed several
times, and, in fact, this was one of the issues that the move towards a single layer was going to
solve. However, there were additional considerations driving this effort.

Issues with Multiple Layers
Layer consolidation had the goal of solving three main problems: Cross-platform messaging
and configuration, issues with validation layer load order, and maintenance and usability.

Layer Order
To function most effectively, validation layers must be loaded in a particular order. For instance,
parameter validation and object lifetime checking should come early in the stack, reducing or
even eliminating the need for other layers to duplicate null-pointer or invalid object checks.
Handle wrapping must take place after all validation is complete, just before the display driver.
With multiple layers, communicating the optimal layer order to users and developers became

April 2019 Unified Validation Layer 1

quite significant both in effort and importance. Significant layer-development time was spent
tracking down developer issues ultimately attributable to loading incomplete or disordered layer
sets, resulting in invalid results or crashes. Also, specifying the order through the command-line
or an environment variable became quite cumbersome.

How to specify optimal layer order

As a temporary work-around, a ‘meta-layer’ was introduced to alleviate the issues. This was a
layer identifier with a recognized name (​VK_LAYER_LUNARG_standard_validation​) that was
intercepted by the loader that then loaded the appropriate layer set in the optimal order.
Significantly, this solution only worked for desktop platforms, leaving mobile platforms at a
disadvantage and increasing confusion as to how this pseudo-layer related to other validation
layers. This became a difficult communication issue in itself.

Platform Differences and Messaging
Android implementations are less flexible when it comes to changes in the canonical set of
validation layers. For instance, Android platforms are infrequently updated compared to
repository updates or even SDK releases. It is important that these platforms have a stable set
of layers. A single layer fulfills this requirement with the advantage that layer order issues then
become moot.

Additionally, due to the Vulkan layer naming scheme, the collection of validation layers had
multiple company names embedded in them (​i.e.​, Google and LunarG), which might lead to
confusion for developers expecting Vulkan validation layers. Moving to a single layer also
presented the opportunity of making the layer naming more clear and understandable.

Maintainability and Ease Of Use
As mentioned previously, the initial Vulkan bring-up effort saw a proliferation of distinct
validation layers.

April 2019 Unified Validation Layer 2

Historical Validation Layers

At that time, this seemed reasonable as layer content was in the early stages of development
and individual layers eased parallel development across a large number of people. This also
took great advantage of Vulkan’s novel layer architecture. As development progressed into the
long-term, disadvantages stemming from the profusion of layers became apparent and in some
cases began to seriously hinder development.

Each of the validation layers, as well as other utility layers, required its own ​complete ​set of
layer infrastructure, consisting of many supporting elements.

Layer Infrastructure Elements

April 2019 Unified Validation Layer 3

Some progress was made towards sharing layer infrastructure (utils, logging, config), but this
did little to prevent layers from diverging greatly in their particular implementations. Making
cross-layer changes became almost prohibitively expensive in time and manpower.

In order to reduce duplication of state information and to minimize the frustrations of maintaining
so many layers, the number of discrete layers was gradually reduced, mostly through
brute-force coalescing of source code. These efforts resulted in the introduction of the ​core
validation layer​, which eventually subsumed half-a-dozen existing layers.

Canonical Validation Layers in Optimal Order

Code Separation and Organization
As the number of validation layers shrank, their complexity grew. Lacking a consistent layer
architecture, layers used different conventions and organizations to implement layer support
functions and validation source code, and it was common that the two were commingled. A
poorly defined separation between layer management source code and validation source code
made it more difficult for new contributors.

Code Generation and API Updates
Several of the canonical layers used Vulkan registry-based code generation for their source
code. Some layers were completely code generated, some partially so, while core validation
uses no generation.

Code generation of layer infrastructure source code can be extremely useful, as new APIs,
extensions, and changes are picked up without user intervention, and it becomes unnecessary
for contributors to add infrastructure support for new Vulkan features. This keeps the layers
up-to-date and accurate to the specification, thereby reducing code-divergence and support
issues.

April 2019 Unified Validation Layer 4

The most recent layer consolidation process resulted in a nearly 5,000-line reduction (~10%) in
layer infrastructure source code.

Layer Consolidation
To address the issues of layer order, naming, messaging, and ease-of-use and maintainability,
the determination was made to combine the canonical set of validation layers into a single
validation layer. Moving to a single layer would immediately equalize the major platform disparity
issues while also instantly resolving layer-order issues.

A single layer also means that five divergent and independent sets of layer infrastructure could
be replaced by a single well-maintained set.

In developing a plan for the layer consolidation, the following constraints were identified:

● Zero-downtime for the validation codebase
● Implementation should occur in small, well-defined stages
● Development should occur within the existing source base
● Validation source code should be separated from layer infrastructure source code
● Canonical layers (development, build, and execution) must coexist seamlessly with the

consolidated layer at all times
● Validation source code must be shared between the two layer sets

A small handful of implementation alternatives were considered. The first was to continue the
previous approach of coalescing layers, copying the related source code from each layer into
the combined layer, and then combining each layer’s data into a single, monolithic layer data
structure.

April 2019 Unified Validation Layer 5

Brute-force Consolidation Approach

This problematic approach would result in excessive disruption to the codebase and significant
impacts to quality and reliability would be impossible to avoid.

A better option would be to extend the (longstanding, but only partially implemented) standard
layer architecture to all layers, potentially easing the consolidation effort. This
previously-developed design organized validation source code into subroutines containing the
before-call validation code, before-call state update code, and after-call state update code.

Standard Layer Architecture

April 2019 Unified Validation Layer 6

If this architecture was extended to all layers, collecting the Validate- and Record- routines into
a single layer and calling them consecutively would facilitate consolidation.

Consolidation using Standard Layer Architecture

However, the difficult problem of merging the layer data from the separate layer
implementations would remain.

Final Approach
The chosen approach was to rely on the second option and extend it using a heavily modified
layer framework based on the Vulkan Layer Factory. In this architecture, the data and pre/post
calls for each layer would live in a ​validation object​. Polymorphism allowed methods in each
layer’s object to be called independently, and all layer data would be encapsulated in the object
itself. This option required some additional up-front work, but this was mostly offset by the
simpler nature of the changes, which were low-impact and could be done in small stages.

April 2019 Unified Validation Layer 7

The Framework (chassis) Processes ​Validation Objects

Ultimately, each existing layer was migrated to use this new framework, which became the
‘layer chassis.' After the five existing layers had moved to the new validation object architecture,
combining them into a single layer was a straightforward task.

The Layer Chassis
The layer chassis implements a framework to process ​validation objects​, handling many
common functions and all dispatch control.

Vulkan Layer Dispatching
The Vulkan layer call structure is implemented such that, for a given API, each layer in the chain
is called sequentially. Layers not hooking a specific API call are skipped, and if no layer hooks
an API-call, the chain may contain only the display driver.

The Standard Validation Call Chain

April 2019 Unified Validation Layer 8

In each layer, persistent state was separated into global per-instance and per-device data
structures and kept in a map. Each instance (and all physical devices for that instance) mapped
back to a single ​instance layer data​ structure. Likewise, all devices (and related command
buffers and queues) mapped back to a single owning ​device layer data​ structure

The Validation Object Architecture
The new validation object architecture would need to maintain this separation of data, as well as
provide a form of dispatching that would normally be done by the layer chain. Thus, a new base
validation object​ class was defined. This class contained much of the data held in the instance
layer-data maps of the existing layers.

ValidationObject ​Class Data

Each of the old layers has been refactored as a ​validation object​, overriding default pre/post API
functions where needed and extending the class with layer-specific data.

April 2019 Unified Validation Layer 9

ValidationObject ​Child Objects

Note that the handle-wrapping carried out by the ​unique_objects​ layer required some
additional special consideration. This utility layer is responsible for ensuring that each handle
the validation layers encounter is unique, which improves validation in the cases of duplicate or
reused handles from the driver. The special consideration was that validation layers, in the
course of normal operation, sometimes ​originate ​API calls to the driver. To guarantee that in
these cases the handle wrapping was also performed, the ​unique_objects ​functionality was
implemented as part of the layer chassis. Each API-call has a dispatch function, which
(optionally) wraps/unwraps Vulkan handles and calls down the chain, and these dispatch
functions can be used by the chassis dispatch calls as well as by other ​validation objects​.

Layer Data Organization
Each Vulkan instance and device has its own instances of each of these child objects held in
the ​Object Dispatch Vector​ of the instance/device ​validation objects​. The ​layer_data​ map now
holds pointers to a ​validation object​ created for each instance and each device.

April 2019 Unified Validation Layer 10

Layer Chassis Data Layout

Layer Chassis Dispatching
The base class ​ValidationObject​ has default methods for all pre/post intercept functions, and
each child ​validation object​ (​e.g​., ThreadSafety, StatelessValidation, etc.) can override any of
the functions that they need to intercept. For a given API, the chassis will call the virtual

April 2019 Unified Validation Layer 11

functions in each child class for each of the three intercept points: ​PreCallValidate,
PreCallRecord,​ or ​PostCallRecord​.

Sample Chassis API Call Control Dispatching

Pre/Post Call Function Signatures
Other than a handful of special cases, function signatures for the ​PreCallValidate ​and
PreCallRecord ​methods match the API call signature exactly. However, ​PostCallRecord
methods do not follow this pattern. In order to allow these functions the necessary context,
down-chain call return values are passed into these functions as the final parameter. For
instance, the standard Vulkan signature for vkQueuePresentKHR is:

VkResult vkQueuePresentKHR(VkQueue, const VkPresentInfoKHR *) {};

But the ​PostCallRecord ​method for this function is modified to take the ​VkResult ​parameter:

void PostCallRecordQueuePresentKHR(VkQueue, const VkPresentInfoKHR *​, VkResult​) {};

April 2019 Unified Validation Layer 12

Standard Dispatching Scheme Special Cases
There is a small number of cases where the standard Pre/Post architecture has not been
followed, resulting in changes to the standard chassis function signatures for these APIs. At this
time, all of these cases are in the ​CoreChecks​ ​ValidationObject​. These changes fall into
performance-related persistent state cases, or changes to support GPU-assisted validation.

Each of these calls is special-cased in the layer chassis, and for each, an additional ​validation
object​ default implementation is supplied with the custom function signature that then calls back
into the original method if not overridden. For example, to allow ​ValidationObjects ​other than
CoreChecks​ to deal with the custom saved-state parameter (​ads_state​) used by
vkAllocateDescriptorSets()​, the default implementation falls back to the standard default
implementation.

Custom Function Default Fallback

The typical situation for the performance cases is that complex data structures must be created
and populated for the validation ​and ​recording steps, and that the potential performance impact
of repeating this data consolidation step was prohibitive. The following APIs save some state
locally for performance benefit:

● vkCreateGraphicsPipelines()

● vkCreateComputePipelines()

● vkCreateRayTracingPipelinesNV()

GPU-assisted validation modifies the down-chain call parameters for some calls. These are:

● vkCreateDevice()

● vkCreateGraphicsPipelines()

● vkCreatePipelineLayout()

● vkCreateShaderModule()

● vkAllocateDescriptorSets()

Validation Thread Safety
To prevent race conditions and maintain the integrity of validation state data, validation and
recording routines are typically protected by locks. In the legacy architecture, each layer relied
on a single global lock. In the validation object architecture each ​ValidationObject ​has its own

April 2019 Unified Validation Layer 13

lock. Before dispatching pre- or post-API calls to child ​ValidationObjects​, the lock for that
particular child object is obtained using a virtual function. Depending on its own needs, the child
object determines if the function actually implements a lock or not. For instance, ​ThreadSafety
requires that no locks are held during its validation and recording steps.

Example Layer Chassis Vulkan API Call Showing Locking

Feature Control
Disabling a layer in the multi-layer model was straightforward, if not convenient -- simply avoid
loading the layer. However, achieving the same level of control in the validation object
architecture required the provision of other control methods, The layer chassis supports three
methods; in order of usefulness, these are the ​VK_EXT_validation_features ​extension, the
vk_layer_settings.txt​ file, and environment variables.

Validation Features Extension
Applications can control the enabling or disabling of ​validation features​ through the
VK_EXT_validation_features ​extension. Though it offers other options, for the purposes of
this paper, the focus is placed on the layer-control aspects of this extension.

April 2019 Unified Validation Layer 14

By specifying one or more of the following enum values at application CreateInstance-time,
features corresponding to each of the legacy layers can be disabled.

Mapping of Layer Names to Corresponding ​Validation Features

Legacy Layer Name Validation Features Disable Enum Value

Threading VK_VALIDATION_FEATURE_DISABLE_​THREAD_SAFETY​_EXT

Parameter Validation VK_VALIDATION_FEATURE_DISABLE_​API_PARAMETERS​_EXT

Object Tracker VK_VALIDATION_FEATURE_DISABLE_​OBJECT_LIFETIMES​_EXT

Core Validation VK_VALIDATION_FEATURE_DISABLE_​CORE_CHECKS​_EXT

Unique Objects VK_VALIDATION_FEATURE_DISABLE_​UNIQUE_HANDLES​_EXT

Configuration File
Features can also be controlled through the standard ​vk_layer_settings.txt​ file. The
configuration entry used for this purpose is ​‘disables.'

Sample Settings File Disable Entry

Adding this entry in the layer config file will result in the ​Thread Safety​ ​feature being disabled
during the validation of the application.

Environment Variables
Similarly, an environment variable can be used to produce the same result.

Sample Environment Variable Disable Entry

April 2019 Unified Validation Layer 15

Validation Workflow
Each ​validation feature​ is accompanied by a performance cost. For some projects, it may be
that running with a subset of features is a more optimal workflow.

Relative Performance Impact of Validation Features

Running an application with only ​Object Lifetimes​ and ​API Parameters​ enabled would have
the least impact on performance, yet would catch most of the obvious errors that might later
cause crashes. ​CoreChecks​ might be enabled after the application is running cleanly with the
first two features. ​Unique Handles​ should be enabled for hard-to-track-down object lifetime or
core checks issues, while perhaps the ​Thread Safety​ feature is only occasionally enabled.

Transition Away from Legacy Layers
The Vulkan-ValidationLayers (and supporting repositories) and the Vulkan SDK as of release
1.1.106 will use the unified Khronos validation layer as the default validation layer in all cases.
However, the five legacy layers still exist, are present in the repository and the SDK, and will
function exactly as before for a period of time, perhaps several weeks or months. After this time,
the legacy layers and references to them will be removed from the repository, significantly
speeding up build-times and reducing complexity in the chassis. The changes will be
propagated through the following Vulkan SDK, and all documentation will be updated
accordingly.

Summary

As time has provided the perspective of distance to the view of validation layer development, so
has experience led to the realization that having more validation layers is not necessarily better.
In fact, having a single layer will go a long way towards solving some of the problems
responsible for that hard-won experience: issues with layer ordering, platform disparities, and
long- and short-term maintenance and updates.

April 2019 Unified Validation Layer 16

Ultimately, the decision was made to consolidate the remaining five validation layers and the
necessary resources were allocated, but some important constraints were included. The
consolidation had to be implemented in relatively small stages that would minimally affect other
development. At all times, the current working set of layers must coexist with and work
alongside the new consolidated layer. Most importantly, the old and new layers must share all
validation source code.

These requirements narrowed the set of possible solutions, leading to a ‘validation object’
architecture. In this new design, each individual layer becomes a ​validation object​, containing all
of the layer’s validation routines and data. ​Validation objects​ are then processed by a
newly-developed validation framework known as the ‘layer chassis,’ developed with experience
gained from the Vulkan Layer Factory.

Each existing layer was incrementally converted to this ​validation object​-based architecture, in
most cases transparently to other ongoing development. Upon completion of this phase, the
legacy layers existed as five individual instantiations of the framework, each having a single
validation object​. The new, consolidated layer quickly followed, implemented as a single
instantiation of the framework but processing multiple ​validation objects​. This consolidated layer
is named the Khronos validation layer -- ​VK_LAYER_KHRONOS_validation​.

The new architecture allows much simpler, straightforward messaging concerning which layers
should be loaded, and in that order, bringing parity across platforms. A reduction in the amount
of source code, a more logical source code layout, and a more robust layer infrastructure are
significant steps along the way to a healthier Vulkan ecosystem.

Future
Layer chassis work is not complete. Here are a few items under consideration for the current
implementation:

● Move GPU-Assisted validation into a standalone ​ValidationObject
● Implement per-API validation disables, perhaps through the configuration file
● Further cleanup on the CoreChecks ​ValidationObject​, particularly the object state map

accessor methods
● Better organize the ​ValidationObject ​and its child objects with regards to data hiding
● Implement per-object reader-writer locks to improve thread contention issues

April 2019 Unified Validation Layer 17

References

Validation Layer Documents
Additional layer-specific information can be found in the KhronosGroup/Vulkan-ValidationLayers
GitHub repository in the file docs directory:

● Vulkan-ValidationLayers/docs/​khronos_validation_layer.md
● Vulkan-ValidationLayers/docs/​core_validation_layer.md
● Vulkan-ValidationLayers/docs/​object_tracker_layer.md
● Vulkan-ValidationLayers/docs/​parameter_validation_layer.md
● Vulkan-ValidationLayers/docs/​threading_layer.md
● Vulkan-ValidationLayers/docs/​unique_objects_layer.md

A description of the options available in the layer configuration file can be found in the
KhronosGroup/Vulkan-ValidationLayers GitHub repository in the layers directory:

● Vulkan-ValidationLayers/layers/​vk_layer_settings.txt

The current layer description and status can be found in the
KhronosGroup/Vulkan-ValidationLayers GitHub repository in the layers directory:

● Vulkan-ValidationLayers/layers/​README.md

Validation Layer Source Codes
● The layer sources can be found in the ​KhronosGroup/Vulkan-ValidationLayers​ Github

Acknowledgements
Please acknowledge the extensive contributions of

● Dave Houlton, LunarG, Inc.
● Mike Schuchardt, LunarG, Inc.
● Jeremy Hayes, LunarG, Inc.
● Tobin Ehlis, Google, Inc.

Document Change Log
4/01/19 - Initial Revision

April 2019 Unified Validation Layer 18

https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/master/docs/khronos_validation_layer.md
https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/master/docs/core_validation_layer.md
https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/master/docs/object_tracker_layer.md
https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/master/docs/parameter_validation_layer.md
https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/master/docs/threading_layer.md
https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/master/docs/unique_objects_layer.md
https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/master/layers/vk_layer_settings.txt
https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/master/layers/README.md
https://github.com/KhronosGroup/Vulkan-ValidationLayers/blob/master/layers/vk_layer_settings.txt

