
Vulkan 1.1 Compatibility Statement
SDK Strategy

(Originally Published May 2018, Latest update January 2019)

Does Vulkan 1.1 support my Vulkan 1.0 application?

Did you know that since Vulkan 1.1 has been released by Khronos, there is no longer a need for
a Vulkan SDK based on 1.0 headers? Vulkan 1.1 is a minor release, and as such adds
additional functionality to the API without modifying the behavior of the already existing Vulkan
1.0 functionality. Therefore, it guarantees compatibility for 1.0 applications:

1. Application binaries built from a 1.0 Vulkan header will work with Vulkan 1.1 versions of
the validation layers, Vulkan runtime (loader), and drivers.

2. Application source written to use the 1.0 Vulkan header can be built with the Vulkan 1.1
SDK.

LunarG no longer plans to release Vulkan SDKs based on a 1.0 Vulkan header. To continue to
get the latest validation layers and other SDK components, you can use the Vulkan 1.1
versioned SDKs and be confident that the validation layers, tools, and Vulkan runtime will be
compatible with your Vulkan 1.0 applications.

As well, IHV Windows driver updates will continue to bundle the Vulkan Runtime and they will
be moving to a Vulkan 1.1 version of the Vulkan Runtime.

How to migrate your applications to Vulkan 1.1

Starting with Vulkan 1.1, the VkApplicationInfo substructure of VkInstanceCreateInfo is no
longer optional if you want to create a Vulkan 1.1 (or newer) application. There is now a process
for properly creating a Vulkan application for Vulkan 1.1 and newer:

1. First, find out what API version the runtime supports for Instances:
a. To do this, you must determine if the ​vkEnumerateInstanceVersion​ entry-point

is available on your system.

PFN_vkEnumerateInstanceVersion

pEnumInstanceVersion =

reinterpret_cast<PFN_vkEnumerateInstanceVersion*>(

vkGetInstanceProcAddr(VK_NULL_HANDLE,

January 2019 LunarG Vulkan White Paper 1

"vkEnumerateInstanceVersion"));

b. If ​pEnumInstanceVersion​ is NULL, then your system can only support Vulkan

1.0.

c. If ​pEnumInstanceVersion​ is not NULL, then you must query the API version
that your Vulkan loader can support for VkInstance objects by calling the
function.

uint32 api_version = VK_MAKE_VERSION(1, 0, 0);

if (NULL != pEnumInstanceVersion) {

// Call down and get the actual Vulkan API Version

 // supported.

 // NOTE: It should replace what we originally put in.

pEnumInstanceVersion(&api_version);

}

This is the ​maximum API version​ an instance can be created for on a system.
If the returned version is greater-than or equal-to Vulkan 1.1 you may create a Vulkan
1.1 Instance.

if (VK_MAKE_VERSION(1, 1, 0) <= apiVersion) {

// 1.1 or newer is available

}

2. Next, if Vulkan 1.1 instances are supported, you must create a VkApplicationInfo

structure, and set the ​apiVersion​ field to the following:

VkApplicationInfo myApplicationInfo = {};

...

myApplicationInfo.apiVersion = VK_MAKE_VERSION(1,1,0);

3. Then, you must set the VkInstanceCreateInfo ​pApplicationInfo​ to point to the above

application info struct:

VkInstanceCreateInfo myInstanceCreateInfo = {};

…

myInstanceCreateInfo.pApplicationInfo = &myApplicationInfo;

4. Finally, call vkCreateInstance as you normally would with your VkInstanceCreateInfo
structure.

January 2019 LunarG Vulkan White Paper 2

Ensuring that your physical devices support Vulkan 1.1

An additional process is necessary to ensure that your physical devices support Vulkan 1.1:

1. Once you have a Vulkan 1.1 instance available, you must check which physical devices
support Vulkan 1.1. To do this on any physical device, call:

VkPhysicalDeviceProperties properties = {};

…

vkGetPhysicalDeviceProperties(physicalDevice, &properties);

2. The supported API version of this physical device will be given in the ​apiVersion​ field of
the VkPhysicalDeviceProperties structure and will take the same format as the
apiVersion​ field in vkEnumerateInstanceVersion.

Code Snippet

[Based on the ​“vulkan_1_1_flexible.cpp”​ sample in the ​Vulkan SDK​]

VkInstance instance = VK_NULL_HANDLE;

// Keep track of the major/minor version we can actually use

uint16_t using_major_version = 1;

uint16_t using_minor_version = 0;

std::string using_version_string = "";

// Set the desired version we want

uint16_t desired_major_version = 1;

uint16_t desired_minor_version = 1; ​// Set this to the version you desire
uint32_t desired_version = VK_MAKE_VERSION(

desired_major_version,

desired_minor_version,

0);

std::string desired_version_string = "";

desired_version_string += std::to_string(desired_major_version);

desired_version_string += ".";

desired_version_string += std::to_string(desired_minor_version);

VkInstance instance = VK_NULL_HANDLE;

std::vector<VkPhysicalDevice> physical_devices_desired;

// Determine if the new instance version command is available

January 2019 LunarG Vulkan White Paper 3

https://vulkan.lunarg.com/

PFN_vkEnumerateInstanceVersion pEnumerateInstanceVersion =

 (PFN_vkEnumerateInstanceVersion)vkGetInstanceProcAddr(

VK_NULL_HANDLE,

"vkEnumerateInstanceVersion");

// If the command exists, query what version the Vulkan instance supports

uint32_t api_version = 0;

uint16_t instance_major_version = 1;

uint16_t instance_minor_version = 0;

if (NULL != pEnumerateInstanceVersion &&

 VK_SUCCESS == pEnumerateInstanceVersion(&api_version)) {

 // Translate the version into major/minor for easier comparison

 instance_major_version = VK_VERSION_MAJOR(api_version);

 instance_minor_version = VK_VERSION_MINOR(api_version);

 std::cout <<

"Instance support detected for Vulkan " <<

instance_major_version << "." << instance_minor_version << "\n";

}

// Check current version against what we want to run

if (instance_major_version > desired_major_version ||

 (instance_major_version == desired_major_version &&

 instance_minor_version >= desired_minor_version)) {

 // Initialize the VkApplicationInfo structure with the version

 // of the API we're intending to use

 VkApplicationInfo app_info = {};

 app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;

 app_info.pNext = NULL;

 app_info.pApplicationName = APP_SHORT_NAME;

 app_info.applicationVersion = 1;

 app_info.pEngineName = APP_SHORT_NAME;

 app_info.engineVersion = 1;

 app_info.apiVersion = desired_version;

 // Initialize the VkInstanceCreateInfo structure

 VkInstanceCreateInfo inst_info = {};

 inst_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;

 inst_info.pNext = NULL;

 inst_info.flags = 0;

 inst_info.pApplicationInfo = &app_info;

 inst_info.enabledExtensionCount = 0;

 inst_info.ppEnabledExtensionNames = NULL;

 inst_info.enabledLayerCount = 0;

 inst_info.ppEnabledLayerNames = NULL;

January 2019 LunarG Vulkan White Paper 4

 // Attempt to create the instance

 if (VK_SUCCESS != vkCreateInstance(&inst_info, NULL, &instance)) {

 std::cout << "Unknown error creating " <<

desired_version_string << " Instance\n";

 exit(-1);

 }

 // Get the list of physical devices

 uint32_t phys_dev_count = 1;

 if (VK_SUCCESS != vkEnumeratePhysicalDevices(instance,

&phys_dev_count, NULL) ||

 phys_dev_count == 0) {

 std::cout << "Failed searching for Vulkan physical devices\n";

 exit(-1);

 }

 std::vector<VkPhysicalDevice> physical_devices;

 physical_devices.resize(phys_dev_count);

 if (VK_SUCCESS != vkEnumeratePhysicalDevices(instance,

&phys_dev_count, physical_devices.data()) ||

 phys_dev_count == 0) {

 std::cout << "Failed enumerating Vulkan physical devices\n";

 exit(-1);

 }

 // Go through the list of physical devices and select only

 // those that are capable of running the API version we want.

 for (uint32_t dev = 0; dev < physical_devices.size(); ++dev) {

 VkPhysicalDeviceProperties physical_device_props = {};

 vkGetPhysicalDeviceProperties(physical_devices[dev],

&physical_device_props);

 if (physical_device_props.apiVersion >= desired_version) {

 physical_devices_desired.push_back(physical_devices[dev]);

 }

 }

 // If we have something in the desired version physical device

 // list, we're good

 if (physical_devices_desired.size() > 0) {

 using_major_version = desired_major_version;

 using_minor_version = desired_minor_version;

 }

}

January 2019 LunarG Vulkan White Paper 5

if (using_major_version < desired_major_version ||

 (using_major_version == desired_major_version &&

 using_minor_version < desired_minor_version)) {

 using_version_string += std::to_string(using_major_version);

 using_version_string += ".";

 using_version_string += std::to_string(using_minor_version);

 std::cout <<

 "Determined this system can only use Vulkan API version " <<

 using_version_string <<

 " instead of desired version " << desired_version_string <<

 std::endl;

 vkDestroyInstance(instance, nullptr);

 exit(-1);

}

std::cout <<

"Determined that this system can run desired Vulkan API version " <<

desired_version_string << std::endl;

// You can now use Vulkan desired_major_version.desired_minor_version!

Supporting Both 1.0 and 1.1 Loaders

If you intend to support Vulkan 1.0 loaders as well as Vulkan 1.1 loaders, you can't link directly
to any Vulkan 1.1 commands. Otherwise, when your Vulkan 1.1 application attempts to utilize
the 1.1 commands, it will crash since the dynamic linking will fail. Because of this, if you do
intend to support both, you must build your own dispatch table of Vulkan 1.1 commands using
vkGetInstanceProcAddr​ and ​vkGetDeviceProcAddr​ and then validate that the commands
are present as well as verifying the Vulkan version as mentioned above.

Since there is a likelihood of your application reaching a user who still has a Vulkan 1.0 loader
on their system, it is best to make sure you consider this during your creation process.

January 2019 LunarG Vulkan White Paper 6

In Summary

You cannot legally use Vulkan 1.1 functionality if you do any of the following:

1. Fail to successfully call ​vkEnumerateInstanceVersion​.
2. Set ​myInstanceCreateInfo.pApplicationInfo​ ​= NULL​ when creating your instance.
3. Set ​myApplicationInfo.apiVersion ​incorrectly when creating your instance. Incorrect

values include:
a. ​0
b. ​VK_MAKE_VERSION(1, 0, <anything>)

Remember, to legally use Vulkan 1.1 functionality in your application you ​should​:

1. Query ​vkEnumerateInstanceVersion​ by calling ​vkGetInstanceProcAddr
2. Call ​vkEnumerateInstanceVersion

a. Verify that it returns ​VK_SUCCESS
b. Determine that the API version returned is greater than or equal to

VK_MAKE_VERSION(1, 1, 0)
3. Create an instance with ​VkApplicationInfo​ defined and the “apiVersion” field set to

VK_MAKE_VERSION(1, 1, 0)
4. Select a physical device that supports Vulkan 1.1

All these steps are required to properly initialize Vulkan 1.1. ​If you don’t perform all of these
steps, you can only be guaranteed that Vulkan 1.0 functionality is present.

January 2019 LunarG Vulkan White Paper 7

