
Vulkan Debug Utilities
A Vulkan Extension Tutorial
Mark Young, LunarG

Introduction
The Vulkan API is now two years old, and as with all things it is showing areas that require
improvement. Debugging is one of the areas where we can make small changes that produce a
large benefit for the Vulkan community. After soliciting input from IHVs and several game
companies, and reviewing feedback from GitHub users, we decided to improve the debugging
functionality exposed by both ​VK_EXT_debug_report​ and ​VK_EXT_debug_marker​. As we
investigated, we decided that replacing the extension was the proper decision going forward
instead of trying to shoehorn new functionality into the existing extensions. The changes
resulted in the creation of a new extension: ​VK_EXT_debug_utils​.

Why the New Extension?

The Vulkan Working Group received feedback from developers at several software companies
asking for more information from each debug message to help them isolate the trigger in their
own code. Validation messages created a special concern since an application can create
multiple Vulkan objects, and only one of those objects may be handled incorrectly.

To help software developers isolate issues more efficiently, LunarG decided to combine the
functionality of ​VK_EXT_debug_report​ and ​VK_EXT_debug_marker​ to produce more useful
debug messages. However, while attempting to coordinate the work between these two
separate extensions, we recognized a fundamental problem. ​VK_EXT_debug_report​ is an
instance extension, while ​VK_EXT_debug_marker​ is a device extension, and there is no easy
and clean way to indicate that functionality in an instance extension is dependent upon a device
extension being present and enabled. To simplify things, we decided we could just define a new
instance extension that supplied all the necessary items in one place.

We also expanded the information that is returned to a user’s debug callback. This change
could have been made with the old extensions, but it would require adding items to the ​pNext
chain of most structures. While doable, it added more complexity than we thought was
worthwhile since every debug callback would have to care about the ​pNext​ chain. Of course, we
still may add functionality to the new ​pNext​ chain in the future.

Finally, the ​VK_EXT_debug_report​ extension uses a special internal enumeration to track object
types, ​VkDebugReportObjectTypeEXT​. This enumeration was supported for a time, and even

May 2018 LunarG Vulkan Extension Tutorial 1

used by the ​VK_EXT_debug_marker​ extension. However, the latest versions of the Vulkan spec
replace this structure with a new core object type enumeration, ​VkObjectType​. Due to this spec
change, Khronos decided to stop expanding ​VkDebugReportObjectTypeEXT ​and instead
support adding new enumeration values only to ​VkObjectType. ​Consequently, the
VkDebugReportObjectTypeEXT​ enumeration will grow stale over time.

With all these factors under consideration, LunarG decided to create this new Vulkan debug
utility from scratch.

Benefits of This New Extension
The ​VK_EXT_debug_utils​ introduces the concept of a debug messenger,
VkDebugUtilsMessengerEXT​. During creation, the application details what debug message
types and severities are needed. Additionally, the application provides a function pointer to a
callback message handler that should be triggered when a message with the appropriate
severity and type is encountered. The ​VkDebugReportCallbackEXT​ object type works in a
similar manner to the ​VK_EXT_debug_report​ object types. The improved usefulness resides in
what data is now provided to the new callback. To read what data is provided to this callback,
go to the ​“Creating a Debug Messenger Callback”​ section.

Like the ​VK_EXT_debug_marker​ extension, the new extension allows you to identify specific
locations in a ​VkCommandBuffer​. Previously, in the ​VK_EXT_debug_marker​ extension, the
identified locations were called “markers.” Now in ​VK_EXT_debug_utils​, they are called
“labels.” In addition, ​VK_EXT_debug_utils​ adds the new ability to insert these “labels” into a
VkQueue​ to indicate the progress of the runtime/driver/hardware in processing a Vulkan queue.
For more information on “labels,” refer to the ​“Adding Labels”​ section below.

Another feature of ​VK_EXT_debug_marker​ that is supported by the ​VK_EXT_debug_utils
extension is the ability to associate application defined data with a Vulkan handle. The most
common use case of this feature is naming each Vulkan handle with an easily identifiable string
name. The handle value of a Vulkan object can change internal to any Vulkan component
including the loader, layers, or ICD -- so without naming your handles, the information returned
could be confusing. Here’s an example:

If you’re calling ​vkCmdBindPipeline​ incorrectly, and you’ve enabled validation layers, you
may find that the error message mentions a handle for the erroneous
VkCommandBuffer​. However, when you look for the problematic handle in your list of
known ​VkCommandBuffer​ handles, you find that it doesn’t match any known value,
which could be caused by the loader or layer having their own handle for the same
object.

May 2018 LunarG Vulkan Extension Tutorial 2

However, if an application sets a name for each of its Vulkan handles, the names are
associated with those handles in any component supporting this extension. This result is true
even if the handle value for the object changes. In the above case, if you had named the
VkCommandBuffer​ something like “Primary Command Buffer in Thread B,” you would get the
unusual handle value back, but with the name “Primary Command Buffer in Thread B.” For
more information on naming, refer to ​“Naming Objects.”

Additionally, ​VK_EXT_debug_utils​ continues to provide the ability to define object-specific
binary content using a tag. The content of these tags tends to be very complex and is most
often used for debugging layers that need the additional content, like ​RenderDoc​. Tags are not
used by any validation layer messages, and as such do not get returned to the user in the
debug messenger callback. Refer to the ​“Tagging Objects”​ section below for more information.

After reading the information above, you may feel like the new extension doesn’t bring anything
new to the table. However, if you look at the data returned in a callback registered with
VK_EXT_debug_report​, you’ll notice that when a debug message is returned to your callback,
you only receive information about one object as well as the message. When using the new
extension, ​VK_EXT_debug_utils​ combines most of the information you can set and passes this
information to your callback function. Here is the additional information included in the callback
message beyond what is returned by the old ​VK_EXT_debug_report​ extension:

- A list of relevant objects for each debug message
- A name associated with each object (if the name has been set)
- A list of command buffer labels encountered up to that point

- Only if a ​VkCommandBuffer​ has been found in the object list and has labels
associated with it

- A list of queue labels encountered up to that point
- Only if a ​VkQueue​ has been found in the object list and has labels associated

with it

With this additional information, you should find it easier to narrow down the location of a debug
message in even the most complicated applications. This is especially useful if you have
enabled ​VK_LAYER_LUNARG_standard_validation​ and you receive an error from validation
messages about a particular sequence of commands.

May 2018 LunarG Vulkan Extension Tutorial 3

https://renderdoc.org/

How Do I Use It?
Before you can use it, you must make sure the ​VK_EXT_debug_utils​ extension is available
using ​vkEnumerateInstanceExtensionProperties. ​But, once you have determined that the
extension is available, you can unlock its debugging capabilities.

We cover the highlights of using ​VK_EXT_debug_utils​ below, but you can find detailed
information about the use of this new extension in the “Debugging” section of the Vulkan
specification.

Use this extension in a similar way to how you previously used the ​VK_EXT_debug_report​ and
VK_EXT_debug_marker​ extensions. However, instead of enabling two extensions separately
(one an instance extension, and the other a device extension), you enable a single instance
extension.

First, we will discuss receiving debug messages using the new extension. If you don’t need to
receive debug messages, then you may skip to the “​Naming Objects​” section below.

Creating a Debug Messenger Callback
Since you intend to receive debug messages, you must first create a callback function that will
receive debug messages and it must be formatted after the fashion of the
PFN_vkDebugUtilsMessengerCallbackEXT​ function pointer.

typedef​ ​VkBool32​ (VKAPI_PTR *PFN_vkDebugUtilsMessengerCallbackEXT)(
 VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,

 VkDebugUtilsMessageTypeFlagsEXT messageType,

 ​const​ VkDebugUtilsMessengerCallbackDataEXT* pCallbackData,
 ​void​* pUserData);

You will notice that we’ve split the message severity (​messageSeverity​) from the message type
(​messageType​) in the new callback. The severity indicates the importance of the message. The
possible values are currently defined as:

typedef​ ​enum​ VkDebugUtilsMessageSeverityFlagBitsEXT {
 VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT = ​0x00000001​,
 VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT = ​0x00000010​,
 VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT = ​0x00000100​,
 VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT = ​0x00001000​,
} VkDebugUtilsMessageSeverityFlagBitsEXT;

May 2018 LunarG Vulkan Extension Tutorial 4

As the importance of the message increases, so does the enumeration value. In addition, we’ve
left space for future types that could fit in between any of the existing values. For this reason,
you can always compare the values in your callback:

if​ (messageSeverity >= VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT) {
 ​// This means the message was either a warning or error of some kind.
}

The message types describe what kind of message you are receiving. Currently, the following
message types are available (however more could be added in the future):

typedef​ ​enum​ VkDebugUtilsMessageTypeFlagBitsEXT {
 VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT = ​0x00000001​,
 VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT = ​0x00000002​,
 VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT = ​0x00000004​,
} VkDebugUtilsMessageTypeFlagBitsEXT;

General messages typically come from Vulkan components themselves. The validation bit
indicates that the message is related to the process of validating your application’s behavior
against the specification itself. These are the most common messages from the validation layers
since most validation errors or warnings indicate a possible violation of the Vulkan specification.
Finally, there are performance messages that suggest performance improvements you can
make to your application.

pCallbackData​ points to a ​VkDebugUtilsMessengerCallbackDataEXT​ structure containing
information about what triggered the message and enough help to figure out the location that
caused the trigger:

typedef​ ​struct​ ​VkDebugUtilsMessengerCallbackDataEXT​ {
 VkStructureType sType;

 ​const​ ​void​* pNext;
 VkDebugUtilsMessengerCallbackDataFlagsEXT flags;

 ​const​ ​char​* pMessageIdName;
 ​int32_t​ messageIdNumber;
 ​const​ ​char​* pMessage;
 ​uint8_t​ queueLabelCount;
 VkDebugUtilsLabelEXT* pQueueLabels;

 ​uint8_t​ cmdBufLabelCount;
 VkDebugUtilsLabelEXT* pCmdBufLabels;

 ​uint8_t​ objectCount;
 VkDebugUtilsObjectNameInfoEXT* pObjects;

} VkDebugUtilsMessengerCallbackDataEXT;

May 2018 LunarG Vulkan Extension Tutorial 5

The first three parameters in the structure are common to most Vulkan structures, so we won’t
discuss them here.

The second set of three parameters provides all the details about the specific message.

1. ​pMessageIdName ​is a string indicating what triggered the message. For validation
layers, this string may contain the valid usage ID (VUID) string identifier that will help
identify the specific portion of the specification that the layer believes was violated.

2. messageIdNumber​ indicates the unique number of this message (if it is non-zero). If this
message was triggered by a validation layer, it will contain a unique numeric valid usage
ID for the validation warning or error that occurred. Use this number in a table lookup to
determine the location in the Vulkan specification that the validation layers believe you
may have violated.

3. pMessage​ is a C-style string (null-terminated) that indicates the specifics of the
message.

The callback returns both a message ID number and name. The validation layers currently
return the ​messageIdNumber​ for a given validation message. If the ​messageIdNumber​ is
present, you can look up the actual Valid Usage ID string by accessing the
vk_validation_error_messages.h header file, finding the value in the
UNIQUE_VALIDATION_ERROR_CODE enum, and then finding the value in the table mapping
VUIDs to spec snippet. The spec snippet will contain the final VUID string that can be used to
find the exact section of the spec. We realize this is a complex process for users, and going
forward, the intent is that the validation layers will return the actual spec VUID string using the
new p​MessageIdName​ field.

Once you have the VUID string, you can open the ​Vulkan Specification​ and append the hash
symbol (#) followed by the VUID string to jump directly to the section.

For example:

If you were able to determine that your VUID string was:
VUID-VkApplicationInfo-pApplicationName-parameter

You could access the spec section directly through:
https://www.khronos.org/registry/vulkan/specs/1.1/html/vkspec.html#VUID-VkApp

licationInfo-pApplicationName-parameter

Now we get to items new to this extension. ​queueLabelCount​ and ​pQueueLabels​ contain any
information about labels your application may have applied to any ​VkQueue​. These fields will
only be populated if a ​VkQueue​ object appears in the ​pObjects​ list. ​pQueueLabels​ will only
contain labels set in the particular ​VkQueue​ object up to the point of the message being
triggered. These labels contain the following information:

May 2018 LunarG Vulkan Extension Tutorial 6

https://www.khronos.org/registry/vulkan/specs/1.1/html/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.1/html/vkspec.html#VUID-VkApplicationInfo-pApplicationName-parameter
https://www.khronos.org/registry/vulkan/specs/1.1/html/vkspec.html#VUID-VkApplicationInfo-pApplicationName-parameter

typedef​ ​struct​ ​VkDebugUtilsLabelEXT​ {
 VkStructureType sType;

 ​const​ ​void​* pNext;
 ​const​ ​char​* pLabelName;
 ​float​ color[​4​];
} VkDebugUtilsLabelEXT;

pLabelName​ is the name of the label your application defined and ​color​ is a floating point color
you identify. While validation layers and debug messages don’t use the color, other layers or
even your own application could use this information.

If no ​VkQueue​ object appears in the ​pObjects​ list, then ​queueLabelCount​ should be 0 and
pQueueLabels​ will be NULL. Items in the ​pQueueLabels​ array are sorted so that the most
recent labels appear at the lower index values, i.e. the label at index 0 is the most recent label
associated with the ​VkQueue​.

Likewise, ​cmdBufLabelCount​ and ​pCmdBufLabels​ contain any labels from any
VkCommandBuffer​ in the ​pObjects​ list. Labels can be inherited from a primary command buffer
by a secondary command buffer. However, for debug messages, most layers and the loader
only know information about the active command buffer, or its child objects. Therefore,
cmdBufLabelCount​ will only be non-zero and ​pCmdBufLabels​ will only be non-NULL if any
VkCommandBuffer​ appears in the ​pObjects​ list and that ​VkCommandBuffer ​has associated
labels.

The final two elements of the ​VkDebugUtilsMessengerCallbackDataEXT​ are: ​objectCount​ and
pObjects​. ​pObjects​ contains the information about any objects that can be easily associated
with a message. The information is stored in ​VkDebugUtilsObjectNameInfoEXT ​structures:

typedef​ ​struct​ ​VkDebugUtilsObjectNameInfoEXT​ {
 VkStructureType sType;

 ​const​ ​void​* pNext;
 VkObjectType objectType;

 ​uint64_t​ objectHandle;
 ​const​ ​char​* pObjectName;
} VkDebugUtilsObjectNameInfoEXT;

Each object contained in ​pObjects​ will contain the object’s type (​objectType​) and the object’s
handle (​objectHandle​). If you define a name for the object (as described in the ​“Naming Objects”
section), the object’s name (​pObjectName​) will be set to point to a string containing the name
you provided -- allowing you to easily identify most objects. When combining use of ​pObjects
with the labels, you should be able to narrow down what portion of your code triggered a
message.

May 2018 LunarG Vulkan Extension Tutorial 7

Finally, the callback function receives a pointer to user-supplied data (​pUserData​) that you
provide to each messenger during its creation.

Creating (and Destroying) a Debug Messenger
Once you’ve setup your callback, you need to create a debug messenger that will be used to
trigger the callback when a message occurs.

VkResult ​vkCreateDebugUtilsMessengerEXT​(
 VkInstance instance,

 ​const​ VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo,
 ​const​ VkAllocationCallbacks* pAllocator,
 VkDebugUtilsMessengerEXT* pMessenger);

Again, this looks pretty standard for those of you who have done a lot of Vulkan work. The most
important component is the 2nd parameter, ​pCreateInfo​, which is a pointer to the following
structure:

typedef​ ​struct​ ​VkDebugUtilsMessengerCreateInfoEXT​ {
 VkStructureType sType;

 ​const​ ​void​* pNext;
 VkDebugUtilsMessengerCreateFlagsEXT flags;

 VkDebugUtilsMessageSeverityFlagsEXT messageSeverity;

 VkDebugUtilsMessageTypeFlagsEXT messageType;

 PFN_vkDebugUtilsMessengerCallbackEXT pfnUserCallback;

 ​void​* pUserData;
} VkDebugUtilsMessengerCreateInfoEXT;

The ​messageSeverity​ parameter is intended to indicate ​all​ message severities that you wish to
trigger your callback. You’ll notice that it uses the “Flags” and not “FlagBits” version of the
severity because it may take more than one value. For example, you may set your messages
severity as follows:

messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT |

 VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;

Likewise, ​messageType​ is a combination of ​all​ message types you are interested in tracking.
You then set ​pfnUserCallback​ with a pointer to your created callback function from above.

The messages that are returned to your callback must be of both a severity that you have
enabled and a type that you have enabled during the ​vkCreateDebugUtilsMessengerEXT​ call.

May 2018 LunarG Vulkan Extension Tutorial 8

Otherwise, if only the severity matches but not the type or vice-versa, it will not trigger your
callback.

Finally, you can provide a pointer to additional data using ​pUserData ​or you can set it to NULL.
Many times, applications pass a pointer to a structure or class that is used during your callback
to perform some sort of logging.

As with all standard Vulkan objects, you destroy a ​VkDebugUtilsMessengerEXT​ with a call to
vkDestroyDebugUtilsMessengerEXT​.

void​ ​vkDestroyDebugUtilsMessengerEXT​(
 VkInstance instance,

 VkDebugUtilsMessengerEXT messenger,

 ​const​ VkAllocationCallbacks* pAllocator);

Naming Objects
Naming allows an application to identify objects using a specific name and is useful because
object handle values can (and do) change when entering the loader, a layer, or even a runtime.
If a message occurs in one of those layers for a particular object, the handle will be unknown to
the user and could cause confusion. Thus naming objects was born.

Let’s take a quick look at why naming is so useful. Say you have an application making an
incorrect call that is caught by the validation layers. Let’s also say, that the Vulkan loader is
wrapping the object itself so that it can keep track of other data associated with it. At the
application you may have a handle of 0xFEED for your object. The loader, however, unwraps
that information, and now passes 0xF00D down to the first layer. That layer also unwraps it and
it now becomes 0xBEEF. Finally, the validation layer discovers the bug and let’s you know
(using your Debug Utils Messenger callback) that 0xBEEF was wrong. But, you wonder, what is
object 0xBEEF?

Now, if you had “named” the object something useful, it would be easy to identify. Let’s go back
to the above example. Instead, before you make your call, you identify the name “Hamburger”
with your object you associated with 0xFEED. If the loader encounters a bug, you get back
0xF00D as a handle, but also a name “Hamburger.” If one of the layers encounter the bug, you
get 0xBEEF, but also with “Hamburger.” Obviously, naming is much more helpful.

Naming objects with ​VK_EXT_debug_utils​ is similar to the way you name objects with
VK_EXT_debug_marker​. You simply make a call to:

May 2018 LunarG Vulkan Extension Tutorial 9

VkResult ​vkSetDebugUtilsObjectNameEXT​(
 VkDevice device,

 ​const​ VkDebugUtilsObjectNameInfoEXT* pNameInfo);

The structure is very similar to the ​VkDebugMarkerObjectNameInfoEXT​ found in the
VK_EXT_debug_marker​ extension. The main difference is simply the member names, and the
fact that the type in the new ​VkDebugUtilsObjectNameInfoEXT​ structure uses the ​VkObjectType
enum instead of the ​VkDebugReportObjectTypeEXT​ enum. Notice that this is the same exact
structure returned to the callback as described in ​“Creating (and Destroying) a Debug
Messenger,”​ but we’ll restate it here just so you can see the format.

typedef​ ​struct​ ​VkDebugUtilsObjectNameInfoEXT​ {
 VkStructureType sType;

 ​const​ ​void​* pNext;
 VkObjectType objectType;

 ​uint64_t​ objectHandle;
 ​const​ ​char​* pObjectName;
} VkDebugUtilsObjectNameInfoEXT;

Tagging Objects
Tagging is similar to naming, but has a very different purpose. For naming, you associate an
application provided string to a particular object. Tagging, instead, associates an integer ID and
binary data with an object. For the best use of tagging, both the application and the layer and/or
runtime must agree on the meaning of the IDs and the use of the data.

Examples of tagging might include:

● Tagging a shader object with the human-readable vertex and fragment shader contents
● Tagging a buffer with either the contents or metadata about the contents

Typically, tagging is used for debug or performance tools such as ​RenderDoc​.

In general, most debug layers and tools get the necessary information they need by simply
referring to objects by name. Since the Debug Utils Messenger callbacks return to the
application, no binary data is needed to pass through the layers except a name to keep track of
unique objects. The application is already the keeper of all the information it needs, so no
tagging information is returned through the Debug Utils Messenger callback.

However, if you need to use tagging, ​VK_EXT_debug_utils​ implements it in a similar way as
VK_EXT_debug_marker​. In this case, you now call:

May 2018 LunarG Vulkan Extension Tutorial 10

https://renderdoc.org/

VkResult ​vkSetDebugUtilsObjectTagEXT​(
 VkDevice device,

 ​const​ VkDebugUtilsObjectTagInfoEXT* pTagInfo);

The structure is also similar to the ​VkDebugMarkerObjectTagInfoEXT​ found in the
VK_EXT_debug_marker​ extension. Two differences are: 1) the member names, and 2) the type
in the new ​VkDebugUtilsObjectNameInfoEXT​ structure uses the ​VkObjectType​ enum instead of
the ​VkDebugReportObjectTypeEXT​ enum:

typedef​ ​struct​ ​VkDebugUtilsObjectTagInfoEXT​ {
 VkStructureType sType;

 ​const​ ​void​* pNext;
 VkObjectType objectType;

 ​uint64_t​ objectHandle;
 ​uint64_t​ tagName;
 ​size_t​ tagSize;
 ​const​ ​void​* pTag;
} VkDebugUtilsObjectTagInfoEXT;

Some of you may be unfamiliar with this structure, so I’ll briefly cover it. ​objectType​ and
objectHandle​ are exactly the same as naming. ​tagName​ is a numeric name or identifier for this
tag and should be used to indicate the type of data being tagged. Again, if you implement a
layer to intercept this information, this value would indicate the specific information you’re
attempting to set for the indicated object. ​pTag​ is a pointer to data of ​tagSize​ bytes that is being
associated with this object.

May 2018 LunarG Vulkan Extension Tutorial 11

Adding Labels
Sometimes, even knowing what object encountered a problem isn’t enough. Often, you may
touch an object many times and in similar ways throughout a frame. In these cases, it would be
great if you could narrow down where in the frame (or even multiple frames) an issue occurred
-- like how there are mile-markers set along the side of a highway to let you know where you are
when driving. Labels are a great way to insert custom identifiers along the way to help you
identify where you are at any given time.

Using ​VK_EXT_debug_utils​ you can insert labels into either a ​VkQueue​, or a
VkCommandBuffer, similarly ​to “markers” first exposed by the ​VK_EXT_debug_marker
extension -- except you could only add markers to a ​VkCommandBuffer​ object.

There are two methods for adding labels to either a VkQueue or a VkCommandBuffer:

- Starting and stopping a label region
- Simply inserting a label

Let’s look at a quick example to understand how we would use both.

Let’s say you’re drawing a humanoid figure for your application. You might draw it in the
following way:

DrawFigure()

{

 UpdateMatrix();

 DrawUpperBody();

 DrawLowerbody();

}

DrawUpperBody()

{

 UpdateMatrix();

 DrawChest();

 DrawHeadNeck();

 DrawLeftArm();

 DrawRightArm();

}

DrawLowerBody()

{

 UpdateMatrix();

 DrawWaist();

 DrawLeftLeg();

 DrawRightLeg();

}

May 2018 LunarG Vulkan Extension Tutorial 12

Running validation, you notice an error on a draw. But which draw and how do you narrow it
down? With labels, you could do the following:

DrawFigure()

{

 BeginLabel(​"Draw Figure"​);
 UpdateMatrix();

 DrawUpperBody();

 DrawLowerbody();

 EndLabel(); ​// "Draw Figure"
}

DrawUpperBody()

{

 BeginLabel(​"Draw Upper Body"​);
 UpdateMatrix();

 DrawChest();

 InsertLabel(​"Draw head and neck"​);
 DrawHeadNeck();

 InsertLabel(​"Draw left arm"​);
 DrawLeftArm();

 InsertLabel(​"Draw right arm"​);
 DrawRightArm();

 EndLabel(); ​// "Draw Upper Body"
}

DrawLowerBody()

{

 BeginLabel(​"Draw Lower Body"​);
 UpdateMatrix();

 InsertLabel(​"Draw waist"​);
 DrawWaist();

 InsertLabel(​"Draw left leg"​);
 DrawLeftLeg();

 InsertLabel(​"Draw right leg"​);
 DrawRightLeg();

 EndLabel(); ​// "Draw Lower Body"
}

Both the begin/end and inserts are used in ways that allow you to easily identify a particular
region. Now, if an error or warning occurred during the “DrawLeftLeg” routine, you would know
which draw to target.

May 2018 LunarG Vulkan Extension Tutorial 13

Labels can be added on a either a command buffer or a queue basis. To begin a label region in
a queue, you use the following command:

void​ ​vkQueueBeginDebugUtilsLabelEXT​(
 VkQueue ​queue​,
 ​const​ VkDebugUtilsLabelEXT* pLabelInfo);

This command accepts the following structure:

typedef​ ​struct​ ​VkDebugUtilsLabelEXT​ {
 VkStructureType sType;

 ​const​ ​void​* pNext;
 ​const​ ​char​* pLabelName;
 ​float​ color[​4​];
} VkDebugUtilsLabelEXT;

This is the same exact structure returned to the callback as described in ​“Creating (and
Destroying) a Debug Messenger.”​ ​Color​ may be used by a layer or tool to generate colored text
for the label name. If you don’t care about the color, set each value of this parameter “1.0” in
case a tool does use the color.

Once you finish that labeled section, you call:

void​ ​vkQueueEndDebugUtilsLabelEXT​(
 VkQueue ​queue​);

Notice that it doesn’t take the label again. In this way, the end works similar to a “pop” command
by simply ending the last label that was created on that particular ​VkQueue​ with the
vkQueueBeginDebugUtilsLabelEXT​ command.

If, instead of defining a whole region, you can insert a single label identifying a particular
location, use:

void​ ​vkQueueInsertDebugUtilsLabelEXT​(
 VkQueue ​queue​,
 ​const​ VkDebugUtilsLabelEXT* pLabelInfo);

May 2018 LunarG Vulkan Extension Tutorial 14

If you define labels associated with a ​VkQueue​ and a message is triggered that has that
particular ​VkQueue​ in the list of objects, then it will also populate the ​queueLabelCount​ and
pQueueLabels​ data fields of the callback with the appropriate content. In that case, the data will
be stored similar to a stack, with the first element being the most recent label and the last
element being the oldest.

Likewise, you can insert labels inside a command buffer using commands similar to the above
VkQueue​ commands:

void​ ​vkCmdBeginDebugUtilsLabelEXT​(
 VkCommandBuffer commandBuffer,

 ​const​ VkDebugUtilsLabelEXT* pLabelInfo);
void​ ​vkCmdEndDebugUtilsLabelEXT​(
 VkCommandBuffer commandBuffer);

void​ ​vkCmdInsertDebugUtilsLabelEXT​(
 VkCommandBuffer commandBuffer,

 ​const​ VkDebugUtilsLabelEXT* pLabelInfo);

Notice how similar they are. The only real difference being that they require a
VkCommandBuffer​ instead of a ​VkQueue​. Like the ​VkQueue​ labels, if a Debug Utils Messenger
callback is triggered with a ​VkCommandBuffer​ object in the pObjects list and that command
buffer contains labels, the labels will be added to the ​cmdBufLabelCount​ and ​pCmdBufLabels
fields of the callback. Again, like the queue content, the data is returned similar to a stack, with
the first label being the most recent and the last label being the oldest. Let’s look at our example
about the draws. If the bug was in the DrawLeftLeg() routine, then when the error returned, the
values of ​cmdBufLabelCount​ and ​pCmdBufLabels​ would look like the following:

cmdBufLabelCount = ​3​;
pCmdBufLabels[​0​] = ​"Draw left leg"​;
pCmdBufLabels[​1​] = ​"Draw Lower Body"​;
pCmdBufLabels[​2​] = ​"Draw Figure"​;

One special attribute of command buffer labels is that they can be enabled/disabled across
command buffer boundaries. For example, you may begin a label in a primary command buffer
and end it in a secondary command buffer. Or you could begin a label in one secondary
command buffer and end it in an entirely different secondary command buffer. The only caveat
is that the command buffer dependency chain may not be known at the time validation (and
other) messages are triggered. Therefore, for those kind of messages you can only count on the
contents of the one command buffer. However, for tools like ​RenderDoc​, the spanning of
command buffers should function correctly.

May 2018 LunarG Vulkan Extension Tutorial 15

https://renderdoc.org/

Application Usage Examples

Setting Up a Debug Utils Messenger and Callback
The following code snippet shows how to setup a Debug Utils Messenger callback and create a
messenger that will use it. Also, notice that because this is an extension, you need to query the
Vulkan commands for VK_EXT_debug_utils using the vkGetInstanceProcAddr:

PFN_vkCreateDebugUtilsMessengerEXT CreateDebugUtilsMessengerEXT;

PFN_vkDestroyDebugUtilsMessengerEXT DestroyDebugUtilsMessengerEXT;

VkDebugUtilsMessengerEXT dbg_messenger;

VkInstance instance;

// Define a callback to capture the messages

VKAPI_ATTR VkBool32 VKAPI_CALL ​debug_messenger_callback​(
 VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,

 VkDebugUtilsMessageTypeFlagsEXT messageType,

 ​const​ VkDebugUtilsMessengerCallbackDataEXT* callbackData,
 ​void​* userData) {
 ​char​ prefix[​64​];
 ​char​ *message = (​char​ *)​malloc​(​strlen​(callbackData->pMessage) + ​500​);
 assert(message);

 ​if​ (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT) {
 ​strcpy​(prefix, ​"VERBOSE : "​);
 } ​else​ ​if​ (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT) {
 ​strcpy​(prefix, ​"INFO : "​);
 } ​else​ ​if​ (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT) {
 ​strcpy​(prefix, ​"WARNING : "​);
 } ​else​ ​if​ (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) {
 ​strcpy​(prefix, ​"ERROR : "​);
 }

 ​if​ (messageType & VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT) {
 ​strcat​(prefix, ​"GENERAL"​);
 } ​else​ {
 ​if​ (messageType & VK_DEBUG_UTILS_MESSAGE_TYPE_SPECIFICATION_BIT_EXT) {
 ​strcat​(prefix, ​"SPEC"​);
 validation_error = ​1​;
 }

 ​if​ (messageType & VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT) {
 ​if​ (messageType & VK_DEBUG_UTILS_MESSAGE_TYPE_SPECIFICATION_BIT_EXT) {
 ​strcat​(prefix, ​"|"​);
 }

 ​strcat​(prefix, ​"PERF"​);
 }

May 2018 LunarG Vulkan Extension Tutorial 16

 }

 ​sprintf​(message,
 ​"%s - Message ID Number %d, Message ID String :\n%s"​,
 prefix,

 callbackData->messageIdNumber,

 callbackData->pMessageIdName,

 callbackData->pMessage);

 ​if​ (callbackData->objectCount > ​0​) {
 ​char​ tmp_message[​500​];
 ​sprintf​(tmp_message, ​"\n Objects - %d\n"​, callbackData->objectCount);
 ​strcat​(message, tmp_message);
 ​for​ (​uint32_t​ object = ​0​; object < callbackData->objectCount; ++object) {
 ​sprintf​(tmp_message,
 ​" Object[%d] - Type %s, Value %p, Name \"%s\"\n"​,
 Object,

 DebugAnnotObjectToString(

 callbackData->pObjects[object].objectType),

 (​void​*)(callbackData->pObjects[object].objectHandle),
 callbackData->pObjects[object].pObjectName);

 ​strcat​(message, tmp_message);
 }

 }

 ​if​ (callbackData->cmdBufLabelCount > ​0​) {
 ​char​ tmp_message[​500​];
 ​sprintf​(tmp_message,
 ​"\n Command Buffer Labels - %d\n"​,
 callbackData->cmdBufLabelCount);

 ​strcat​(message, tmp_message);
 ​for​ (​uint32_t​ label = ​0​; label < callbackData->cmdBufLabelCount; ++label) {
 ​sprintf​(tmp_message,
 ​" Label[%d] - %s { %f, %f, %f, %f}\n"​,
 Label,

 callbackData->pCmdBufLabels[label].pLabelName,

 callbackData->pCmdBufLabels[label].color[​0​],
 callbackData->pCmdBufLabels[label].color[​1​],
 callbackData->pCmdBufLabels[label].color[​2​],
 callbackData->pCmdBufLabels[label].color[​3​]);
 ​strcat​(message, tmp_message);
 }

 }

 ​printf​(​"%s\n"​, message);
 fflush(​stdout​);
 ​free​(message);

 ​// Don't bail out, but keep going.
 ​return​ ​false​;
}

May 2018 LunarG Vulkan Extension Tutorial 17

// Setup our pointers to the VK_EXT_debug_utils commands

CreateDebugUtilsMessengerEXT =

 (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(

 instance,

 ​"vkCreateDebugUtilsMessengerEXT"​);
DestroyDebugUtilsMessengerEXT =

 (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(

 instance,

 ​"vkDestroyDebugUtilsMessengerEXT"​);

// Create a Debug Utils Messenger that will trigger our callback for any warning

// or error.

VkDebugUtilsMessengerCreateInfoEXT dbg_messenger_create_info;

dbg_messenger_create_info.sType =

VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;

dbg_messenger_create_info.pNext = ​NULL​;
dbg_messenger_create_info.flags = ​0​;
dbg_messenger_create_info.messageSeverity =

 VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT |

 VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;

dbg_messenger_create_info.messageType =

 VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |

 VK_DEBUG_UTILS_MESSAGE_TYPE_SPECIFICATION_BIT_EXT |

 VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;

dbg_messenger_create_info.pfnUserCallback = debug_messenger_callback;

dbg_messenger_create_info.pUserData = ​NULL​;
VkResult result = CreateDebugUtilsMessengerEXT(instance,

 &dbg_messenger_create_info,

 ​NULL​,
 &dbg_messenger);

// Do all your stuff

// Destroy the Debug Utils Messenger

DestroyDebugUtilsMessengerEXT(instance, dbg_messenger, ​NULL​);

Using Object Names and Command Buffer Labels
The following code snippet shows how to define a label and a named object:

PFN_vkCmdBeginDebugUtilsLabelEXT CmdBeginDebugUtilsLabelEXT;

PFN_vkCmdEndDebugUtilsLabelEXT CmdEndDebugUtilsLabelEXT;

PFN_vkCmdInsertDebugUtilsLabelEXT CmdInsertDebugUtilsLabelEXT;

PFN_vkSetDebugUtilsObjectNameEXT SetDebugUtilsObjectNameEXT;

VkInstance instance;

VkDevice device;

VkCommandBuffer cmd_buf;

VkDebugUtilsLabelEXT label;

May 2018 LunarG Vulkan Extension Tutorial 18

// Setup the function pointers

CmdBeginDebugUtilsLabelEXT =

 (PFN_vkCmdBeginDebugUtilsLabelEXT)vkGetInstanceProcAddr(

 instance,

 ​"vkCmdBeginDebugUtilsLabelEXT"​);
CmdEndDebugUtilsLabelEXT =

 (PFN_vkCmdEndDebugUtilsLabelEXT)vkGetInstanceProcAddr(

 instance,

 "vkCmdEndDebugUtilsLabelEXT"​);
CmdInsertDebugUtilsLabelEXT =

 (PFN_vkCmdInsertDebugUtilsLabelEXT)vkGetInstanceProcAddr(

 instance,

 ​"vkCmdInsertDebugUtilsLabelEXT"​);
SetDebugUtilsObjectNameEXT =

 (PFN_vkSetDebugUtilsObjectNameEXT)vkGetInstanceProcAddr(

 instance,

 "vkSetDebugUtilsObjectNameEXT"​);

// ...

vkBeginCommandBuffer(cmd_buf, &cmd_buf_info);

// Set a name for the command buffer

VkDebugUtilsObjectNameInfoEXT cmd_buf_name = {

 .sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT,

 .pNext = ​NULL​,
 .objectType = VK_OBJECT_TYPE_COMMAND_BUFFER,

 .objectHandle = (​uint64_t​)cmd_buf,
 .pObjectName = ​"CubeDrawCommandBuf"​,
};

SetDebugUtilsObjectNameEXT(device, &cmd_buf_name);

// Begin a label section indicating we're in a draw.

label.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT;

label.pNext = ​NULL​;
label.pLabelName = ​"Inside Draw"​;
label.color = {​0.4f​, ​0.3f​, ​0.2f​, ​0.1f​};
CmdBeginDebugUtilsLabelEXT(cmd_buf, &label);

// Do other stuff

// Insert a single label

label.pLabelName = ​"Temp Label"​;
label.color = {​1.0f​, ​1.0f​, ​1.0f​, ​1.0f​};
CmdInsertDebugUtilsLabelEXT(cmd_buf, &label);

// End the label (this rolls back to any label before "Inside Draw")

// since that is the last one that was created with CmdBeginDebugUtilsLabelEXT

CmdEndDebugUtilsLabelEXT(cmd_buf);

May 2018 LunarG Vulkan Extension Tutorial 19

Updates to the Cube Demo
The LunarG Cube demo has been updated to use the new VK_EXT_debug_utils extension
callbacks when validation is enabled. Additionally, labels have been added to the main
rendering command buffer and several of the objects. This should now provide a good example
for you to use as a basis for implementing the changes in your own application.

vkCmdBindPipeline Error Output:
In order to show some example output, I commented out the ​vkCmdBindPipeline​ in the newly
modified Cube demo and ran it with validation layers enabled (--validate). This was the result for
both the old and new extension callbacks:

Old Method (VK_EXT_debug_report):

ERROR: [DS] Code 7 : Object: 0x1482130 (Name = CubeDrawCommandBuf) | At Draw/Dispatch

time no valid VkPipeline is bound! This is illegal. Please bind one with

vkCmdBindPipeline().

Some of you may notice that there’s actually a little more information here than normal. The two
most important non-NULL Vulkan objects (Object[0] and Object[1]) are now added to the front of
the error message. In addition, if either of them has a name, it is also added. The error message
is a little more lengthy, but it provides some of the information also provided in the new
extension to help those of you who continue to use the older extension.

New Method (VK_EXT_debug_utils):

ERROR : VALIDATION - Message Id Number: 7 | Message Id Name: DS

At Draw/Dispatch time no valid VkPipeline is bound! This is illegal. Please bind

one with vkCmdBindPipeline().

Objects - 1

Object[0] - VkCommandBuffer, Handle 0x1482130, Name "CubeDrawCommandBuf"

Command Buffer Labels - 3

Label[0] - ActualDraw { -0.400000, -0.300000, -0.200000, -0.100000}

Label[1] - InsideRenderPass { 8.400000, 7.300000, 6.200000, 7.100000}

Label[2] - DrawBegin { 0.400000, 0.300000, 0.200000, 0.100000}

May 2018 LunarG Vulkan Extension Tutorial 20

The formatting is from the callback function and only the command buffer is named, but you can
see the labels at the end (ordered in priority, similar to a stack). From this, you can see that the
VkCommandBuffer​ named ​“CubeDrawCommandBuf”​ failed to bind a ​VkPipeline​ by the time we
hit the ​“ActualDraw”​ label. With this, we believe you can quickly find out where your error in
code resides.

Layout Warning/Error Output:
Another change shows both a warning and an error. In this case, cube.c was modified so that
in the demo_prepare_texture_image() function, initialization of the ​VkImageCreateInfo ​structure
was removed in the following way:

 ​const​ VkImageCreateInfo image_create_info = {
 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,

 .pNext = ​NULL​,
 .imageType = VK_IMAGE_TYPE_2D,

 .format = tex_format,

 .extent = {tex_width, tex_height, ​1​},
 .mipLevels = ​1​,
 .arrayLayers = ​1​,
 .samples = VK_SAMPLE_COUNT_1_BIT,

 .tiling = tiling,

 .usage = usage,

 .flags = ​0​,
// Disable .initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED,

 };

This produced the following output:

Old Method (VK_EXT_debug_report):

WARNING: [DS] Code 6 : Object: 0x14 | Mapping an image with layout

VK_IMAGE_LAYOUT_UNDEFINED can result in undefined behavior if this memory is used by the

device. Only GENERAL or PREINITIALIZED should be used.

ERROR: [DS] Code 6 : Object: 0x28fe8e0 | Cannot submit cmd buffer using image (0x13)

[sub-resource: aspectMask 0x1 array layer 0, mip level 0], with layout

VK_IMAGE_LAYOUT_UNDEFINED when first use is VK_IMAGE_LAYOUT_PREINITIALIZED.

Again, notice how informative, yet cluttered, the information appears. Similarly, notice that in this
case, we didn’t name the command buffer, so no name appears. Now let’s look at the new
method:

May 2018 LunarG Vulkan Extension Tutorial 21

New Method (VK_EXT_debug_utils):

WARNING : VALIDATION - Message Id Number: 6 | Message Id Name: DS

Mapping an image with layout VK_IMAGE_LAYOUT_UNDEFINED can result in undefined

behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be

used.

Objects - 1

Object[0] - VkDeviceMemory, Handle 0x14

ERROR : VALIDATION - Message Id Number: 6 | Message Id Name: DS

Cannot submit cmd buffer using image (0x13) [sub-resource: aspectMask 0x1 array

layer 0, mip level 0], with layout VK_IMAGE_LAYOUT_UNDEFINED when first use is

VK_IMAGE_LAYOUT_PREINITIALIZED.

Objects - 1

Object[0] - VkCommandBuffer, Handle 0x28fe8e0

In this case, you can also see that there are no command buffer labels for this command buffer.
So, it’s obviously a different command buffer than we used the first time (in addition to noticing
the missing name).

Future Validation Layer Improvements
As of the publication of this tutorial, the validation layers will return roughly the same information
for both the ​VK_EXT_debug_report​ extension and the ​VK_EXT_debug_utils​ extension
callbacks. The extensions differ in that the ​VK_EXT_debug_report​ extension will also
automatically add in ​VkCommandBuffer​ and ​VkQueue​ labels to the callback results and
separate out some of the information so that the returned messages don’t seem as cluttered.
Going forward, we will be adding additional object information to those error messages that we
determine could benefit from such information. If there is a validation error message you feel
deserves additional object information, please feel free to submit a ​GItHub Issue​ stating clearly
which message and what object information you would like added. Or even better, you can
supply your own ​GitHub Pull Request ​with the completed change.

Conclusion
As you can see, the ​VK_EXT_debug_utils​ extension brings some much needed debug
information to the validation layers. We’ve added support for the ​VK_EXT_debug_utils
extension starting with our Vulkan 1.1-capable loader. You don’t need to use Vulkan 1.1 to
expose the extension functionality as the release of this extension and Vulkan 1.1 just happen
to be timed together. If you desire to use this extension in any fashion, please download

May 2018 LunarG Vulkan Extension Tutorial 22

https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/issues
https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/pulls

LunarG’s Vulkan 1.1 SDK​ for your system. We hope you find the ​VK_EXT_debug_utils
extension as easy to use as it is powerful.

Acknowledgements
I’d like to thank Erika Johnson, Mark Lobodzinski, and Mike Schuchardt from LunarG for helping
to put the finishing touches on this article. Also, thanks to Piers Daniel at NVIDIA for giving it a
final once over.

May 2018 LunarG Vulkan Extension Tutorial 23

https://vulkan.lunarg.com/

