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Summary 

 

This paper discusses how code transformations available as passes in spirv-opt can be used to reduce 

the size of SPIR-V shaders for the Vulkan graphics API . It provides a sample recipe of the options and 

describes the specific passes so that users of spirv-opt can best decide how to adjust the recipe and 

reduce the size of their SPIR-V shaders. 
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Introduction 

 

Since the inception of SPIR-V, there has been an interest in optimizing its code, particularly with the goal 

of reducing its size. Understandably, the raw SPIR-V emitted from the frontend glslangValidator is 

verbose, particularly with regard to function scope variables and their loads and stores. Significant 

opportunities for size reduction come from 1) eliminating these loads and stores, 2) eliminating dead 

code due to branches with constant conditionals and 3) eliminating replicated accesses to uniform 

variables, including images and samplers. 

 

We have introduced passes to spirv-opt that use classic code optimization techniques to address these 

inefficiencies in a SPIR-V module. Combined with spirv-remap , which we use to remove module-level 

dead types and functions, these passes can reduce raw SPIR-V size by over 60%, and bring SPIR-V sizes 

within 40% of DX Byte Code. 

 

These passes have been initially designed to work with SPIR-V modules for graphics APIs such as Vulkan 

and OpenGL. Such shaders use logical addressing. Modules with physical addressing, such as those for 

the OpenCL API will regrettably not derive much benefit at this time. The scope of these passes was 

restricted to speed implementation and delivery of their benefits to the graphics community. The 

structured control flow of shaders and the simplified memory accesses of logical addressing simplify 

these passes. Optimization of kernels is left for future work. 

 

There are several other features which these passes do not support: please refer to the Limitations 

section of this document for more information. Running these passes on modules with unsupported 

features will cause the pass to return silently without changing the module. 

 

 

  

https://www.lunarg.com/
https://github.com/KhronosGroup/glslang
https://github.com/KhronosGroup/glslang/blob/master/README-spirv-remap.txt
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A Recipe 

 

The following is one suggested recipe of spirv-opt passes to reduce the size of a graphics SPIR-V  

module: * 

 

--inline-entry-points-exhaustive 

--convert-local-access-chains 

--eliminate-local-single-block 

--eliminate-local-single-store 

--eliminate-insert-extract 

--eliminate-dead-code-aggressive 

--eliminate-dead-branches 

--merge-blocks 

--eliminate-local-single-block 

--eliminate-local-single-store 

--eliminate-local-multi-store 

--eliminate-insert-extract 

--eliminate-dead-code-aggressive 

--eliminate-common-uniform 

 

Some passes expose optimization opportunities for other passes, and the recipe orders the passes to 

take this into account.  Performing exhaustive inlining first is an important case in point. 

 

Note that the order of spirv-opt pass options controls the order that the passes are applied and 

repeated options cause a repeated application of the pass. 

 

This recipe may be somewhat overkill for some shaders, but is meant to show how all the passes might 

effectively fit together. Some shaders may require fewer passes; some may require more.  

 

 

 

 

 

 

 

 

 

 

 

* Execution of spirv-opt with this recipe should ideally be followed with execution of “spirv-remap --strip 

all --dce all” to remove debug instructions and module-level dead types and functions. 

https://www.lunarg.com/


Lunarg.com August 17, 2017 4 

Pass Descriptions 

 

We will now discuss each pass individually to help users make adjustments to the recipe above. 

 

Note that each pass is applied to all entry point functions and recursively to all functions called by the 

entry point functions after the pass has been applied to them until all functions in all the entry point 

function call trees have been processed. 

Exhaustive Inlining (--inline-entry-points-exhaustive) 

 

Shaders often are broken into separate subroutines to increase modularity. But these subroutine calls 

create a barrier to dataflow analysis and subsequent optimizations. One method for eliminating these 

barriers is through exhaustive inlining of function calls in entry point functions. While exhaustive inlining 

can cause code size increase, in practice the benefits of increased analysis and optimizations have 

outweighed these costs. 

 

The inlining of a function in SPIR-V is generally straightforward. One exception is functions with early 

return. The structured control flow of SPIR-V shaders does not allow for the branch out of a conditional 

that would be required. For the moment, this is implemented by creating a one-trip loop around the 

called function, replacing the early return with a branch to the outer loop’s merge block, which is 

permissible in SPIR-V. The only time this doesn’t work is when early returns are already inside of a loop. 

For the moment, the inliner will not inline such functions. The resulting code will be correct, but its 

optimization will be curtailed by the remaining function call. Improving this situation is left to future 

work. 

 

  

https://www.lunarg.com/
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Local Variable Access Chain Conversion (--convert-local-access-chains) 

 

Shaders often have code that packs data into and unpacks data from structures, typically across function 

calls. After inlining, this copying code is a significant opportunity for optimization. 

 

This pass converts all local variable access chain loads and stores with constant indices into their 

equivalent load or store combined with an insert or extract. For example, the access chain load: 

 

%20 = OpAccessChain %_ptr_Function_v4float %s0 %int_1 

%21 = OpLoad %v4float %20 

 

is converted to: 

 

%24 = OpLoad %S_t %s0 

%25 = OpCompositeExtract %v4float %24 1 

 

and the access chain store: 

 

%19 = OpAccessChain %_ptr_Function_v4float %s0 %int_1 

OpStore %19 %18 

 

Is converted to: 

 

%22 = OpLoad %S_t %s0 

%23 = OpCompositeInsert %S_t %18 %22 1 

OpStore %s0 %23 

 

Since stores are converted to a longer instruction sequence, this conversion is done for local variables 

that are only accessed through such loads and stores and are thus guaranteed to ultimately be 

optimized away. Many of the passes in this discussion restrict their optimizations to such variables. 

 

Among the reasons for this conversion is to allow dataflow analysis to concentrate on one form of 

composite reference, inserts and extracts, and allow it to ignore interaction with access chains. Another 

reason is that extracts have the desirable property that a group of loads from a single composite object 

can share a single load operation. Likewise, a sequence of inserts to the same composite object 

ultimately can share a single load and a single store. This allows for many loads and stores to be easily 

eliminated during single block local variable elimination, discussed next. 

  

https://www.lunarg.com/
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Local Store/Load Elimination - Single Block (--eliminate-local-single-block) 

 

Elimination of local store and load instructions is a significant opportunity for SPIR-V size reduction, but 

elimination of loads and stores is also a de facto method for value propagation, so elimination of stores 

and loads aids analysis and optimizations that are dependent on values, such as dead branch 

elimination. 

 

General elimination of local variables and their loads and stores across an entire function requires a 

complex and expensive algorithm. It is therefore often beneficial in compile time to eliminate some load 

and stores (and possibly their variable) with simpler and cheaper algorithms first. Eliminating stores and 

loads within a single block allows control flow analysis to be ignored. 

 

This pass eliminates store/load and load/load pairs to the same local variable in the same block. It 

optimizes only direct loads and stores of variables. If a store is not live at the end of the block, it will be 

deleted. 

 

For example, the store-load sequence in: 

 

OpStore %v %14 

%15 = OpLoad %v4float %v 

OpStore %gl_FragColor %15 

 

could be optimized to: 

 

OpStore %gl_FragColor %14 

 

And the load-load sequence in: 

 

%31 = OpLoad %v4float %v 

OpStore %32 %31 

%33 = OpLoad %v4float %v 

OpStore %34 %33 

 

would be optimized to: 

 

%31 = OpLoad %v4float %v 

OpStore %32 %31 

OpStore %34 %31 

 

https://www.lunarg.com/
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Access chain loads and stores are not optimized and may actually inhibit optimization. This optimization 

is therefore heavily dependent on the access chain conversion described above. Function calls can also 

inhibit dataflow analysis and optimization, so inlining beforehand is also highly recommended. 

Local Store/Load Elimination - Single Store (--eliminate-local-single-store) 

 

Like the single block load/store elimination above, this pass also optimizes a simple, specific case: a local 

variable, stored to only once. All loads in the same function that the store dominates can simply be 

replaced with the store’s value. 

 

Access chain loads and stores are not optimized and may inhibit optimization, so access chain 

conversion is recommended beforehand. Function calls also may inhibit dataflow analysis and 

optimization, so inlining is also recommended beforehand. 

Insert/Extract Elimination (--eliminate-insert-extract) 

 

After access chain conversion and store/load removal, sequences similar to the following may appear: 

 

%20 = OpCompositeInsert %S_t %18 %19 0 

... 

%22 = OpCompositeInsert %S_t %21 %20 1 

... 

%24 = OpCompositeInsert %S_t %23 %22 2 

… 

%26 = OpCompositeExtract %v4float %24 1 

%29 = OpFMul %28 %26 

 

These sequences are typical in shaders which pack and then unpack a composite object across a 

function call that has been inlined. 

 

Extracts such as the one above may be simply replaced with the corresponding inserted value in the 

insertion sequence. For example, the Extract and FMul above can be replaced with: 

 

%29 = OpFMul %28 %21 

 

Similar to store/load elimination, insert/extract elimination both reduces code size and aids analysis 

through propagation of values. 

 

  

https://www.lunarg.com/
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Dead Branch Elimination (--eliminate-dead-branches) 

 

It is possible for a shader to contain significant sections of code that are never executed because they 

are control dependent on a conditional branch whose value is always false. After inlining, store/load and 

insert/extract elimination, some such opportunities may be exposed as constant Boolean values are 

propagated through the shader into conditional branch instructions. 

 

This pass finds conditional branches on constant Boolean values, converts the conditional branch into 

the correct unconditional branch and eliminates all possible resulting dead code. For example: 

 

... 

OpBranchConditional %true %21 %22 

%21 = OpLabel 

OpStore %v %14 

OpBranch %20 

%22 = OpLabel 

OpStore %v %16 

OpBranch %20 

%20 = OpLabel 

%23 = OpLoad %v4float %v 

… 

 

Would be replaced with: 

 

… 

OpBranch %21 

%21 = OpLabel 

OpStore %v %14 

OpBranch %20 

%20 = OpLabel 

%23 = OpLoad %v4float %v 

… 

 

Such dead code elimination, besides reducing the number of instructions, simplifies control flow and 

thus creates additional opportunities for analysis and optimization. For example, a local variable 

assigned twice before dead branch elimination might only be assigned once after dead branch 

elimination, creating an additional opportunity for single store load/store elimination. So repetition of 

passes may be beneficial, depending on the shaders. 

 

https://www.lunarg.com/
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Block Merge (--merge-blocks) 

 

After dead branch elimination, sequences of single blocks are often left, such as the “after” sequence in 

the dead branch elimination section above. The Block Merge pass cleans up such sequences, creating a 

single block from them. Specifically, this pass searches for a first block with a branch to a second block 

that has no other predecessors. When this is found, the first and second blocks can be combined into a 

single block. For example, the final sequence in the dead branch section above becomes: 

 

… 

OpStore %v %14 

%23 = OpLoad %v4float %v 

… 

 

Besides eliminating instructions, this has the benefit of creating new opportunities for single block 

store/load elimination as it moves instructions previously in different blocks into the same block. For 

example, in the case above, executing single block store/load elimination would delete the load, replace 

%23 everywhere with %14, and the store could potentially be removed as well. 

Local Store/Load Elimination - Multiple Store (--eliminate-local-multi-store) 

 

This pass is used to eliminate all remaining local variables that are only accessed directly with loads and 

stores. Variables with access chain references are not optimized. Thus, this phase is most effective when 

it follows exhaustive inlining and access chain conversion.  

 

The algorithm tracks each variable and its stored value through the program. If at any point multiple 

values for a single variable reach a block, and a phi operation is generated, which merges the multiple 

values into one value and that value is used for the variable from that point until it is assigned again or 

another merge point is reached. If the variable is loaded, the load is deleted and the loaded value is 

replaced with the stored value. All stores of candidate variables are finally deleted. 

 

 

  

https://www.lunarg.com/


Lunarg.com August 17, 2017 10 

For example, the following sequence: 

 

… 

OpBranchConditional %22 %24 %25 

%24 = OpLabel 

%27 = OpVectorTimesScalar %v4float %26 %float_0_5 

OpStore %v %27 

OpBranch %23 

%25 = OpLabel 

%29 = OpFAdd %v4float %28 %18 

OpStore %v %29 

OpBranch %23 

%23 = OpLabel 

%30 = OpLoad %v4float %v 

OpStore %gl_FragColor %30 

 

would be changed to: 

 

… 

OpBranchConditional %22 %24 %25 

%24 = OpLabel 

%27 = OpVectorTimesScalar %v4float %26 %float_0_5 

OpBranch %23 

%25 = OpLabel 

%29 = OpFAdd %v4float %28 %18 

OpBranch %23 

%23 = OpLabel 

%31 = OpPhi %v4float %27 %24 %29 %25 

OpStore %gl_FragColor %31 

 

Note all stores and loads of %v have been removed and the phi value is stored to gl_FragColor. 

 

As stated earlier, this pass will run more efficiently if local loads and stores that can be eliminated with 

simpler passes are eliminated. It will also run more efficiently if any dead control flow is eliminated. 

 

Currently this pass will generate phi functions which are not used. It is therefore beneficial to run a dead 

code elimination pass after this pass. Avoiding these unused phi functions is left for future work. 

 

  

https://www.lunarg.com/
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Dead Code Elimination - Aggressive (--eliminate-dead-code-aggressive) 

 

This pass (aka ADCE) detects and deletes instructions in a function that are not used in computing any 

output value from that function. It does this by marking as live all the function’s output instructions, that 

is, all instructions that directly make changes outside the scope of the function. It then iteratively marks 

as live all instructions that these instructions use until no more instructions are marked live. All 

remaining instructions are dead and can be deleted. For example, consider the following sequence with 

dead variable %dv: 

 

... 

%17 = OpLoad %v4float %Dead 

%18 = OpExtInst %v4float %1 Sqrt %17 

OpStore %dv %18 

%19 = OpLoad %v4float %v 

OpStore %gl_FragColor %19 

OpReturn 

 

Assuming that the store to gl_FragColor is the only output instruction, there is no live load of %dv, thus 

its store instruction (and the instructions that it uses) are not marked live. So they are considered dead 

and deleted: 

 

... 

%19 = OpLoad %v4float %v 

OpStore %gl_FragColor %19 

OpReturn 

 

This version of dead code elimination is particularly good at removing dead def-use cycles. One version 

of these cycles is generated by the local access chain conversion pass. An example of such a def-use 

cycle is: 

 

%19 = OpLoad %S_t %s 

%20 = OpCompositeInsert %S_t %18 %19 0 

%22 = OpCompositeInsert %S_t %21 %20 1 

%24 = OpCompositeInsert %S_t %23 %22 2 

OpStore %s %24 

 

After insert/extract elimination and all extracts are eliminated, these insert sequences remain. Neither 

the single block or single store store/load elimination passes will eliminate the store and thus the insert 

sequence remains. However, the ADCE algorithm will detect that this cycle is not used as part of any 

output computation and will delete it. For this reason, ADCE should be run after insert/extract 

elimination to remove these dead cycles. 

https://www.lunarg.com/
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Common Uniform Elimination (--eliminate-common-uniform) 

 

Loads of uniform values are a potential source of redundant code and thus create an opportunity for 

additional size reduction. 

 

Often uniform values are packed into composite objects and they are loaded using access chains. This 

pass first converts uniform access chain loads into loads and extracts. Just as was true for local variables, 

this form allows loads from the same composite object to be shared and repeating loads to be 

eliminated, which is done next. If the first load does not dominate all remaining loads, it is hoisted to the 

nearest dominating block. Finally, common extracts are shared and the repeat extracts are eliminated. 

 

For example, the following uniform loads: 

 

%34 = OpAccessChain %_ptr_Uniform_float %u %int_0 

%35 = OpLoad %float %34 

OpStore %o0 %35 

%36 = OpAccessChain %_ptr_Uniform_float %u %int_1 

%37 = OpLoad %float %36 

OpStore %o1 %37 

... 

%40 = OpAccessChain %_ptr_Uniform_float %u %int_1 

%41 = OpLoad %float %40 

OpStore %o2 %41 

 

will be converted to: 

 

%50 = OpLoad %U_t %u 

%51 = OpCompositeExtract %float %50 0 

OpStore %o0 %51 

%52 = OpCompositeExtract %float %50 1 

OpStore %o1 %52 

… 

OpStore %o2 %52 

 

Two forms of common uniform loads are the images and samplers used in texture references. However, 

these cannot be removed from the blocks that contain the texture reference. So this pass does a special 

traversal just to eliminate these common uniform loads within a single block. 

 

This pass is fairly independent from the other passes. It does not depend on any of them and they do 

not depend on it. 

 

https://www.lunarg.com/
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Limitations 

 

Besides kernels and physical addressing, there are a few other features that are not currently supported 

and will cause these passes to return silently without making changes. 

 

Most passes currently do not support the extension KHR_variable_pointers. While not as big of an 

effort, most passes also currently do not support OpGroupDecorate, and --convert-local-access-chains 

and --eliminate-common-uniform do not support modules that contain non-32-bit integers. 

 

These limitations exist because of cost/benefit calculation and the desire to make these passes available 

as soon as possible for the restricted functionality. Support may be added in the future as priorities 

change. 

 

Testing and Issues 
 

While reasonable effort has been made to test this code, bugs are possible and the quality of this code is 

dependent on users trying it and reporting issues. Issues can be reported here.  

Future Work 

 

A version of inlining has been requested which only inlines very small functions and functions that are 

only called one time. This assures that the final size of the function is no larger than the original size. 

 

Several other optimizations could be beneficial in reducing SPIR-V size. Constant folding could allow 

more constant branches to be detected. Common Subexpression Elimination could be beneficial for 

some shaders. These are left to future work. 

 

At some point, we should subsume spirv-remap’s module-level dead type and dead function elimination 

into spirv-opt. 
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